


springer series in surface sciences 44



springer series in surface sciences

Series Editors: G. Ertl, H. Lüth and D.L. Mills
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Preface

The present monograph represents itself as a tutorial to the field of optical
properties of thin solid films. It is neither a handbook for the thin film practi-
tioner, nor an introduction to interference coatings design, nor a review on the
latest developments in the field. Instead, it is a textbook which shall bridge
the gap between ground level knowledge on optics, electrodynamics, quan-
tum mechanics, and solid state physics on one hand, and the more specialized
level of knowledge presumed in typical thin film optical research papers on
the other hand.

In writing this preface, I feel it makes sense to comment on three points,
which all seem to me equally important. They arise from the following (mu-
tually interconnected) three questions:

1. Who can benefit from reading this book?
2. What is the origin of the particular material selection in this book?
3. Who encouraged and supported me in writing this book?

Let me start with the first question, the intended readership of this book.
It should be of use for anybody, who is involved into the analysis of op-
tical spectra of a thin film sample, no matter whether the sample has been
prepared for optical or other applications. Thin film spectroscopy may be rel-
evant in semiconductor physics, solar cell development, physical chemistry,
optoelectronics, and optical coatings development, to give just a few exam-
ples. The book supplies the reader with the necessary theoretical apparatus
for understanding and modelling the features of the recorded transmission
and reflection spectra.

Concerning the presumed level of knowledge one should have before read-
ing this book, so the reader should have some idea on Maxwell’s equations
and boundary conditions, should know what a Hamiltonian is and for what
it is good to solve Schrödinger’s equation. Finally, basic knowledge on the
band structure of crystalline solids is presumed. The book should thus be
understandable to anybody who listened to basic courses in physics at any
university.

The material selection was strongly influenced by the always individual
experience on working with and supervising physics students as well as PhD-
students. To a large extent, it stems from teaching activities at Chemnitz
University of Technology, Institute of Physics, where I was involved in uni-
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versity research on thin film properties, and gave several courses on applied
spectroscopy topics as a lecturer. This university time stands for the more
“academic” features of the book. It must be mentioned, that in that time I au-
thored a textbook on thin film optics in German “Das Dünnschichtspektrum”
with emphasis on the formal treatment of the optical response of thin solid
films. But the present monograph is by no means a translation of that Ger-
man book. The reason is, that in fall 2001, I changed to the Optical Coating
Department at the Fraunhofer Institute of Applied Optics and Precision En-
gineering (IOF) in Jena, Germany. From that time, my working field shifted
to more applied research projects on the development of optical coatings,
primarily for the visible or near infrared spectral regions. It is the combina-
tion of university teaching until 2001 with more applied research work at the
Fraunhofer Institute, which defines the individual content and style of the
present monograph.

Finally, let me acknowledge the support of colleagues, co-workers, and
friends in writing this book. First of all, I acknowledge Dr. Claus Ascheron
and Dr. Norbert Kaiser for encouraging me to write it. Thanks are due to Dr.
Norbert Kaiser for critical reading of several parts of the manuscript. The
book could never have been written without the technical assistance of Ellen
Kämpfer, who took the task of writing plenty of equations, formatting graph-
ics and finally the whole text to make the manuscript publishable. Further
technical support was supplied by Martin Bischoff.

Concerning the practical examples integrated into this book, e.g. the mea-
sured optical spectra of organic and inorganic thin solid films, it should be
emphasized that all of them have been obtained in the course of research
work at Chemnitz University (until summer 2001) and the Fraunhofer IOF
(from fall 2001). Therefore, thanks are to the former members of the (un-
fortunately no more existing) research group on thin film spectroscopy (at
Chemnitz University of Technology, Institute of Physics, Department of Op-
tical Spectroscopy and Molecular Physics), and to the researchers in the Op-
tical Coatings Department of the Fraunhofer IOF in Jena. The book much
benefited from the stimulating research atmosphere in these facilities.

Jena, March 2005 Olaf Stenzel
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ρ density matrix in a mixed quantum state
ρnm elements of the density matrix
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S scatter
σ conductivity
σstat static value for the conductivity
σ density matrix of a pure quantum state
σmn elements of the density matrix

T absolute temperature
T transmittance
t field transmission coefficient
t time
tcoh coherence time
τ time constant, relaxation time

u spectral density
UV ultraviolet spectral region

V perturbation operator
V volume
Vj fraction volume
Vij matrix element of the perturbation operator
vphase phase velocity
vz z-component of the velocity
ν wavenumber
VIS visible spectral region
VP Cauchy’s principal value of the integral

W probability
w relative weight function
w Boltzmann’s factor in Chap. 10
ω angular frequency
ω0 eigenfrequency, resonance frequency
ωD Doppler-shifted frequency
ωp plasma frequency
ω̃0 shifted with respect to local field effects resonance frequency
ωnm transition frequency, resonance frequency in quantum mechanics
∆ω spectral bandwidth

x position
χ linear dielectric susceptibility
χh linear dielectric susceptibility of the host
χstat static value of the susceptibility
χres resonant contribution to the susceptibility
χnr nonresonant contribution to the susceptibility
χ(j) susceptibility of j-th order

Z number of quantum states



1 Introduction

1.1 General Remarks

Whenever one is involved in spectroscopic experiments with electromagnetic
waves, knowledge of the interaction of electromagnetic irradiation with mat-
ter is fundamental to the theoretical understanding of the experimental re-
sults. This is true, for example, in molecular as well as in solid state optical
spectroscopy. The light-with-matter interaction is the basis of numerous an-
alytical measurement methods, which are applied in physics as well as in
chemistry and biology. There are a tremendous amount of scientific publica-
tions and textbooks which deal with this subject. So what is the reason for
writing this new book?

The main reason is, that in the present monograph the subject is described
from the viewpoint of the thin-film spectroscopist. Caused by the special
geometry of a thin film sample, in thin film spectroscopy one needs a sub-
stantially modified mathematical description compared to the spectroscopy
of other objects. The reason is, that a thin film has a thickness that is usu-
ally in the nanometer- or micrometer region, while it may be considered to
extend to infinity in the other two (lateral) dimensions. Of course, there also
exist monographs on thin film optics (and particularly on optical coatings
design). It is nevertheless the experience of the author that there appears to
be a discrepancy between the typical reader’s knowledge on the subject and
the scientific level that is presumed in the highly specialized scientific litera-
ture. Moreover, the interaction of light with matter is usually not taught as
a separate university course. An interested student must therefore complete
his knowledge by referring to different courses or textbooks, such as those on
general optics, classical continuum electrodynamics, quantum mechanics and
solid state physics.

It is therefore the authors aim to provide the reader with a short and
compact treatment of the interaction of light with matter (particularly with
thin solid films), and thus to bridge the gap between the readers basic knowl-
edge on electrodynamics and quantum mechanics and the highly specialized
literature on thin film optics and spectroscopy.



2 1 Introduction

1.2 About the Content of the Book

In most practical cases, a thin film is built from a solid material. Therefore,
the particular treatment in this book will mostly concern the specifics of
the spectroscopy of solid matter. However, there appear situations where a
general spectroscopic principle is easier to be explained referring to other
states of matter. Inhomogeneous broadening of spectral lines is a typical
example, as it is most easily explained in terms of the Doppler broadening as
observed in gases. In such cases, we will happily leave the solid state specifics
and turn to gases, in order to make the general principle more transparent.

Crystalline solids may be optically anisotropic. It is absolutely clear that
a general and strong treatment of solid state spectroscopy must consider
anisotropy. Nevertheless, in this book we will mostly restrict on optically
isotropic materials. There are several reasons for this. First of all, many
physical principles relevant in spectroscopy may be understood basing on the
mathematically more simple treatment of isotropic materials. This is partic-
ularly true for many optical coatings, in fact, in optical coatings practice it
is usually sufficient to work with isotropic layers models. There are exclu-
sions from this rule, and in these situations anisotropy will be taken into
account. This concerns, for example, the Giant Birefringent Optics (GBO)
effects treated in connection with Fresnel’s equations (Chap. 6). We will also
refer to material anisotropy when discussing nonlinear optical effects at the
end of this book (Chap. 13). By the way, the depolarization factors intro-
duced in the first part of this book allow to a certain extent to calculate the
anisotropy in optical material constants as caused by the materials morphol-
ogy (Chaps. 3 and 4). However, this book does definitely not deal with wave
propagation in anisotropic materials.

Having clarified these general points, let us turn to the overall structure
of this book. First of all it should be clear, that the reader is presumed to
have a certain knowledge on general optics, electrodynamics and quantum
mechanics. It is not the purpose of this book to discuss the transversality of
electromagnetic waves, nor to introduce the terms of linear or elliptical light
polarization. The reader should be familiar with such kind of basic knowledge,
as well as simple fundamentals of thermodynamics such as Boltzmann’s and
Maxwell’s statistics.

Basing on this knowledge, the first part of the book (Chaps. 2–5) deals
with the classical treatment of optical constants. In the classical treatment,
both the electromagnetic field and the material systems will be described
in terms of classical (non-quantum mechanical) models. Basing on Maxwell’s
equations, we will start with a rather formal introduction of optical constants
and their frequency dependence (dispersion). We will have to introduce such
important terms like the susceptibility, the polarizability, the dielectric func-
tion and the complex refractive index. We will then derive the main classical
dispersion models (Debye-, Drude-, and the Lorentzian oscillator model).
Starting from the Lorentz-Lorenz-formula, there will be a broad discussion of
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the optical properties of material mixtures. The first part of this book will be
finished by the derivation of the Kramers–Kronig-relations for the dielectric
function.

The second part (Chaps. 6–9) describes wave propagation in thin film
systems. We start from Fresnel’s equations for transmission and reflection at
a single interface. This is an utmost important matter in thin film optics.
For that reason, the discussion of these equations will fill the full Chap. 6.
In order to emphasize the physical value of these equations, we will derive a
variety of optical and spectroscopic effects from them. Namely, this chapter
will discuss Brewster’s angle, total and attenuated total reflection of light,
metallic reflection, propagating surface plasmon polaritons and the already
mentioned GBO effects. In Chap. 7, the reader becomes familiar with the
optical properties of thick slabs and single thin films. Chapter 8 deals with
gradient index layers and film stacks, in particular, the matrix method for
calculating transmittance and reflectance of an optical coating is introduced.
In Chap. 9, some special cases are discussed, such as simple quarterwave
stacks and the so-called grating waveguide structures.

The third part of the book (Chaps. 10–12) deals with the semiclassical
treatment of optical constants. In this approach, the electromagnetic field
is still described by Maxwell’s equations, while the material system is de-
scribed in terms of Schrödinger’s equation. The goal is to obtain a semiclas-
sical expression for the dielectric function, and consequently for the optical
constants. Again, the reader is presumed to be familiar with basic knowledge
on quantum mechanics and solid state physics, such as general properties of
the wavefunction, simple models like the harmonic oscillator, perturbation
theory, and Bloch waves. We start with the derivation of Einstein coefficients
(Chap. 10). In this derivation, we become familiar with quantum mechanical
selection rules and Planck’s formula for blackbody irradiation. By the way,
we get the necessary knowledge to understand how a laser works. In Chap. 11,
a density matrix approach will be presented to derive a general semiclassical
expression for the dielectric polarizability of a quantum system with discrete
energy levels. In Chap. 12, the derived apparatus will be generalized to the
description of the optical constants of solids.

Finally, Chap. 13 (which forms the very short fourth part of the book)
will deal with simple effects of nonlinear optics.

1.3 The General Problem

The basic problem we have to regard is the interaction of electromagnetic
irradiation (light) with a specific kind of matter (a thin film system). In order
to keep the treatment compact and ‘simple‘, we will restrict our discussion
to the electric dipole interaction. We will assume throughout this book, that
among all terms in the multipole expansion of the electromagnetic field, the
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electric dipole contribution is the dominant one, and that other (higher order
electric and all magnetic) terms may be neglected.

It is also worth emphasizing, that this book does definitely not deal with
optical coatings design. It rather pursues the physical understanding of the
information that may be drawn from a thin film spectrum as obtained from
the experiment. We will therefore start from the experimental situation a
thin film spectroscopist is confronted with.

In the frames of classical electrodynamics, any kind of light (which is used
in optics) may be regarded as a superposition of electromagnetic waves. The
idea of optical spectroscopy (or in more general optical characterization) is
quite simple: If we have an object to be investigated (we will call it a sample),
we have to bring it into interaction with electromagnetic waves (light). As the
result of the interaction with the sample, certain properties of the light will
be modified. The specific modification of the properties of electromagnetic
waves resulting from the interaction with the sample shall give us information
about the nature of the sample of interest.

For sufficiently low light intensities, the interaction process does not result
in sample damage. Therefore, the majority of optical characterization tech-
niques belongs to the non-destructive analytical tools in materials science.
This is one of the advantages of optical methods.

Although the main idea of optical characterization is quite simple, it may
be an involved task to turn it into practice. In fact one has to solve two
problems. The first one is of entirely experimental nature: The modifications
in the light properties (which represent our signal) must be detected. For
standard tasks, this part of the problem may be solved with the help of com-
mercially available equipment. The second part is more closely related with
mathematics: From the signal (which may be simply a curve in a diagram)
one has to conclude on concrete quantities characteristic for the sample. De-
spite of the researchers intuition, this part may include severe computational
efforts. Thus, the solution of the full problem requires the researcher to be
skilled in experiment and theory alike.

Let us now have a look at Fig. 1.1. Imagine the very simplest case – a
monochromatic light wave impinging on a sample which is to be investigated.
Due to the restriction on electric dipole interaction, we will only discuss the
electric field of the light wave. It may be written according to:

E = E0 e−i(ωt−kr) (1.1)

The parameters characterizing the incoming light (angular frequency ω, in-
tensity (depends on the amplitude E0), polarization of the light (direction
of E0), propagation direction (direction of k) are supposed to be known.
Imagine further, that as the result of the interaction with the sample, we
are able to detect an electromagnetic wave with modified properties. Which
properties of the electromagnetic wave may have changed as the result of the
interaction with the sample?
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Fig. 1.1. Optical signal as the result of interaction of an electromagnetic wave with
the sample

In principle, all of them may have changed. It is absolutely possible, that
the interaction with the sample leads to changes in the frequency of the light.
Typical examples are provided by Raman Scattering, or by several nonlinear
optical processes. The polarization direction of the light may change as well.
Ellipsometric techniques detect polarization changes and use them to judge
the sample properties. Clearly, the light intensity may change (in most cases
the light will be attenuated). This gives rise to numerous photometric meth-
ods analysing the sample properties basing on the measurement of intensity
changes. And finally, anybody knows that the refraction of light may lead to
changes in the propagation direction. Any refractometer makes use of this
effect to determine the refractive index of a sample.

So we see, that the diversity of parameters characterizing electromagnetic
radiation (in practice they are more than those mentioned here) may give
rise to quite diverse optical characterization techniques.

We have now formulated our task: Starting from the analysis of certain
parameters of the electromagnetic irradiation after having interacted with
the sample, we want to obtain knowledge about the properties of the sample
himself. Which kind of sample properties may be accessible to us?

Shortly spoken, the electromagnetic wave coming from the sample carries
information about both the sample material and sample geometry (and the
experimental geometry, but the latter is usually known to us). And if one is
interested in the pure material properties, the geometrical influences on the
signal have to be eliminated – experimentally or by calculations. In worse
cases (and thin film spectra belong to these worse cases), geometrical and
material informations are intermixed in the spectrum in a very complicated
manner. In thin film systems, this is caused by the multiple internal reflec-
tions of light at the individual film interfaces. An experimental elimination
of the geometrical sample contributions is then usually impossible, so that
the derivation of material properties often becomes impossible without the
instantaneous derivation of the geometrical properties by a corresponding
mathematical treatment. As the result, we obtain information about both
the sample material properties (for example the refractive index) and the
geometry (for example the film thickness).

In order to make the theoretical treatment of thin film spectra more un-
derstandable, we will therefore develop the theory in two subsequent steps.
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The first step deals with the description of pure material parameters, such as
the refractive index, the absorption coefficient, the static dielectric constant
and so on. We will present several models that describe these parameters in
different physical systems.

The second step will be to solve Maxwell’s equations in a system with
given material parameters and a given geometry. In our particular case, we
will do that for thin film systems. As the result, we obtain the electric field
of the wave when it has leaved the system. Its properties will depend on the
systems material and geometry. Having calculated the electric field, all the
signal characteristics mentioned before may be theoretically derived. In the
present book, the treatment will follow this philosophy.

In spectroscopy practice, one will proceed in a similar manner. The the-
oretical analysis of a measured spectrum starts from a hypothesis on the
sample properties, including its material properties and geometry. Then,
Maxwell’s equations are solved, and the calculated characteristics are com-
pared to the experimental values. From that, one may judge whether or not
the assumptions previously made on the system were reasonable. If not, the
assumed sample properties have to be altered, until a satisfying agreement
between experiment and theory is achieved.

Having clarified the general features of our approach, let us now turn to
the introduction of the linear optical susceptibility.



Part I

Classical Description of the Interaction
of Light with Matter



2 The Linear Dielectric Susceptibility

2.1 Maxwell’s Equations

Any optical phenomenon is connected with the interaction of electromagnetic
radiation with matter. This interaction may be theoretically treated at differ-
ent levels of difficulty. For example, one may use the purely classical descrip-
tion. It is on the other hand possible to build a strong quantum mechanical
theory. In practice, a large number of practically important problems may be
solved working with classical models only. We will therefore start our treat-
ment with the classical description of the radiation-with-matter interaction.

A purely classical description utilizes Maxwell’s Equations for the descrip-
tion of the electrical and magnetic fields and classical models (for example
Newton’s equations of motion) for the dynamics of the charge carriers present
in any terrestrial matter. On the contrary, a quantum mechanical treatment
is possible within the framework of the quantization of the electromagnetic
field (so-called second quantization) and a quantum theoretical treatment of
matter. This description is necessary, when spontaneous optical effects have
to be described (spontaneous emission, spontaneous Raman scattering, or
spontaneous paramagnetic interactions in nonlinear optics). In applied spec-
troscopy, the accurate quantum mechanical description is often omitted due
to the rather complicated mathematics and replaced by the so-called semi-
classical treatment. Here, the properties of matter are described in terms of
quantum mechanical models, while the fields are treated within the frame-
work of Maxwell’s theory. Maxwell’s equations are therefore used in both
classical and semiclassical approaches, and for that reason we start our dis-
cussion from these equations, which are given below:

1. div B = 0,

B = µ0 (H + M),

2. curl E = −∂B

∂t
,

3. div D = 0,

4. curl H =
∂D

∂t
,

D = ε0E + P .

(2.1)
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Here, E and H represent the vectors of the electric and magnetic fields, while
D and B stand for the electric displacement and the magnetic induction. P
is the polarization, and M the magnetization. In (2.1), neither the free charge
carrier density nor their current density are present. Keeping in mind, that
optics deal with rapidly oscillating electric and magnetic fields, there is really
no need to treat “free” charges separately – due to the short periods, they
will only oscillate around their equilibrium position quite similar to bound
charges. So in our description, the displacement vector contains information
on both free and bound charges. The very few cases, where the static response
of matter with free electrons becomes important in the frames of this book,
cannot be treated within (2.1) and will need separate discussion.

In the following, we will assume that the media are generally non-magnetic
(M is a zero-vector) and isotropic. Optically anisotropic materials will be
treated in a special chapter later, but here we will assume isotropy for sim-
plicity. Neglecting magnetism, from (2.1) one obtains straightforwardly:

curlcurlE = graddivE − ∆E = −µ0
∂2D

∂t2
(2.2)

At this point, we need to establish a relationship between the vectors E and
D, which will be done in the next section.

2.2 The Dielectric Susceptibility

Let us assume, that a rapidly changing electric field with a completely arbi-
trary time-dependence interacts with a matter. One would naturally expect,
that the electric field tends to displace, in general, both negative and positive
charges, thus creating a macroscopic dipole moment of the system. The po-
larization P is per definition the dipole moment per unit volume, and it will
be, of course, time-dependent in a manner that is determined by the time
dependence of E. For the moment, we neglect the spatial dependence of E
and P , because it is not essential for the further derivation. Generally, the
polarization is thus a possibly very involved functional F of the field E:

P (t) = F
[
E(t′ ≤ t)

]
(2.3)

Of course, the polarization of the medium is an action that is caused by the
field (here and in the following, we do not regard ferroelectrics!). Due to the
causality principle, the polarization at a given time t can depend on the field
at the same moment as well as at previous moments t′, but not on the field
behaviour in the future. That is the meaning of the condition t′ ≤ t. We
therefore postulate the following general relationship for the polarization as
a functional of the electric field:

P (t) = ε0

t∫
−∞

κ(t, t′)E(t′)dt′ (2.4)
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Equation (2.4) postulates that the polarization at any time t may principally
depend on the first power of the field at the current and all previous moments,
as follows from the integration interval that is chosen in correspondence with
the mentioned causality principle. The specific way, in which the system “re-
members” the field strength at previous moments, is hidden in the response
function κ(t, t′), which must be specific for any material. Equation (2.4) is in
fact the first (linear) term of an expansion of (2.3) into a Taylor power series
of E. As we hold only the linear term of the series, all optical effects that
arise from (2.4) form the field of linear optics.

In general, when the materials are anisotropic, κ(t, t′) is a tensor. As we
restrict our attention here to optically isotropic materials, P will always be
parallel to E, so that κ(t, t′) becomes a scalar function.

A further facilitation is possible. Due to the homogeneity of time, κ(t, t′)
will in fact not depend on both times t and t′ separately, but only on their
difference ξ ≡ t − t′. Substituting t′ by ξ, we obtain:

P (t) = ε0

∞∫
0

κ(ξ)E(t − ξ)dξ (2.5)

Let us now come to the utmost important case of a harmonic time depen-
dence. Let us assume, that the electric field performs rapid oscillations ac-
cording to:

E(t) = E0 e−iωt

and correspondingly

E(t − ξ) = E0 e−iωt eiωξ.

Note, that we assume a completely monochromatic field. It is then obtained:

P (t) = E0 e−iωtε0

∞∫
0

κ(ξ) eiωξ dξ

(2.6)

= E(t)ε0

∞∫
0

κ(ξ) eiωξ dξ .

We define the linear dielectric susceptibility χ according to:

χ =

∞∫
0

κ(ξ) eiωξ dξ = χ(ω) . (2.7)

The thus defined susceptibility must be complex (it has both real and imagi-
nary parts), and it depends on the frequency of the field even after performing
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the integration in (2.7). Both circumstances arise mathematically from (2.5)
and physically from finite inertness of any material system. Clearly, the charge
carriers cannot instantaneously react on rapidly changing fields, so that their
positions at a given time t depend on the history of the system, which is in
fact the reason for the complicated temporal behaviour of the polarization.
The information on the specific material properties is now carried by χ(ω).

We are now able to formulate the relationship between E and D for
monochromatic electric fields. Indeed, from (2.6) and (2.7) it follows, that

P = ε0χE . (2.8)

In combination with the definition of D we have:

D = ε0E + P = ε0
[
1 + χ(ω)

]
E ≡ ε0ε(ω)E , (2.9)

where we defined the dielectric function ε(ω)

ε(ω) ≡ 1 + χ(ω) .

Equation (2.9) is completely analogous to what is known from the electro-
statics of dielectrics, with the only difference that ε is complex and frequency
dependent. So that we come to the conclusion, that in optics we have a sim-
ilar relationship between field and displacement vectors as in electrostatics,
with the difference that in optics the dielectric constant has to be replaced
by the dielectric function.

2.3 Linear Optical Constants

We may now turn back to (2.2). Keeping in mind that our discussion is
restricted to harmonic oscillations of the fields only, the second derivative
with respect to time in (2.2) may be replaced by multiplying with −ω2.
Replacing moreover D by (2.9), we obtain:

curlcurlE − ω2ε(ω)
c2 E = 0 . (2.10)

Here we used the identity:

ε0µ0 = c−2 ,

where c is the velocity of light in vacuum. For polychromatic fields, the single
Fourier-components have to be treated separately in an analogous manner.

We now remember the vector identity:

curlcurlE ≡ graddivE − ∆E.

In the case that ε �= 0, from divD = 0 it follows that divE = 0. Thus we
finally have:
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∆E +
ω2ε(ω)

c2 E = 0 , (2.11)

where the field vector has been replaced by a scalar field due to the assumed
isotropy. A completely identical equation may be obtained for the magnetic
field.

Let us remark at this point, that due to the assumed optical isotropy,
we will often turn from the vectorial to the scalar mathematical description.
Throughout this book, in these cases we will simply refrain from bold symbols
without further notice.

Assuming that the dielectric function does not depend on the coordinates
itself (homogeneous media), we are looking for a solution in the form:

E(r, t) = E0 e−i(ωt−kr) (2.12)

with k being the wavevector. Nontrivial solutions of (2.11) exist when

k = ±ω

c

√
ε(ω) (2.13)

is fulfilled. Assuming for simplicity, that k is parallel to the z-axis of a Carte-
sian coordinate system, (2.12) describes a planar wave travelling along the
z-axis. It depends on the sign in (2.13) whether the wave is running into the
positive or negative direction. We choose a wave running into the positive
direction, and obtain:

E = E0 e−i
(

ωt− ω
c

√
ε(ω)z

)
(2.14)

where E0 is the field amplitude at z = 0. Let us look on (2.14) in some more
detail.

As we obtained in Sect. 2.2, the dielectric function may be complex, hence
it may have an imaginary part. Of course, the square root will also be a
complex function. We therefore have:√

ε(ω) = Re
√

ε(ω) + iIm
√

ε(ω)

Equation (2.14) therefore describes a damped wave according to:

E = E0 e− ω
c Im

√
ε(ω)z e−i

(
ωt− ω

c Re
√

ε(ω)z
)

(2.15)

with a z-dependent amplitude

E = E0 e− ω
c Im

√
ε(ω)z (2.16)

and a phase:

‘phase’ = ωt − ω

c
Re
√

ε(ω)z.
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Let us calculate the velocity dz/dt of any point at the surface of constant
phase (which is a plane in our case). Regarding the phase as constant and
differentiating the last equation with respect to time, we obtain the so called
phase velocity of the wave according to:

dz

dt
≡ vphase =

c

Re
√

ε(ω)
≡ c

n(ω)
(2.17)

Here we introduced the refractive index n(ω) as the real part of the square
root of the complex dielectric function. Naturally, the refractive index appears
to be frequency dependent (so-called dispersion of the refractive index). In
a medium with refractive index n, the phase velocity of an electromagnetic
wave changes with respect to vacuum according to (2.17).

As a generalization to (2.17), one often defines the complex index of re-
fraction as:

n̂(ω) = n(ω) + iK(ω) ≡
√

ε(ω) (2.18)

Its real part is identical with the ordinary refractive index as defined in (2.17),
while its imaginary part (the so-called extinction coefficient) K is responsible
for the damping of a wave. Indeed, returning to (2.16), we obtain for the
amplitude of the wave:

E = E0 e− ω
c Kz

Because the intensity I of the wave is proportional to the square of the field
amplitude modulus, the intensity damps inside the medium as:

I = I(z = 0) e−2 ω
c Kz ≡ I(z = 0) e−αz. (2.19)

This exponential decay of light intensity for a wave travelling in a lossy
medium is well known as Lambert’s law of absorption with a frequency-
dependent absorption coefficient α defined as:

α(ω) = 2ω
c K(ω) (2.20a)

In terms of the identities:

ν ≡ 1
λ

=
ω

2πc

where ν is the wavenumber and λ the wavelength in vacuum, we come to a
more familiar expression:

α(ν) = 4πνK(ν) (2.20b)

Although the refractive index n and the extinction coefficient K are dimen-
sionless, the absorption coefficient is given in reciprocal length units, usually
in reciprocal centimetres. The reciprocal value of the absorption coefficient
is sometimes called penetration depth. The pair of n and K forms the pair of
linear optical constants of a material.
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2.4 Some General Remarks

In practice, one often has to perform calculations of different spectra with
the purpose to compare them with experimentally measured ones. One of the
simplest tasks is the calculation of an absorption spectrum. Although we have
not yet defined what may be meant by the term “absorption spectrum”, it is
intuitively clear that (at least in simple cases) such an absorption spectrum
should resemble the wavelength dependence of the absorption coefficient of
the material investigated. From the theoretical material described so far, we
find however that the calculation of any absorption spectrum will contain
at least two different parts: First of all, one has to find a suitable model
for the dielectric function that contains the information about the material.
After that, the optical constants may be calculated. Secondly, having this
model in hands, one has to solve the wave equation (2.11) to account for
the particular geometry valid for the (given or assumed) experiment. Hav-
ing solved the wave equation with realistic boundary conditions, we obtain
electric and/or magnetic fields that may be converted into light intensities,
which in turn may be compared with experimental data. Changing the sys-
tems geometry will change the intensities obtained at the output, although
the material might be the same. For example, in Sect. 2.3 we solved the wave
equation, assuming however that the dielectric function is the same at any
point. In other words, we assumed there a completely homogeneous medium,
particularly without any interfaces. That resulted in Lambert’s law (2.19),
but the latter cannot be applied in other geometries, for example in thin film
spectroscopy (although it is often done!). So that both material and geometry
specifics must be considered in any spectra calculation.

There is a further complication in real live. What we have described so
far is the philosophy of the forward search: We start from a model, calculate
the optical constants, solve the wave equation and finally calculate the in-
tensities. In practice, one is much more often confronted with reverse search
tasks: The absorption (or any other) spectrum has been measured, and the
optical constants have to be calculated. In several geometries (and particu-
larly in thin film spectroscopy), the reverse search procedures are much more
complicated than the forward search. The next section will exemplify a part
of a forward search, namely the calculation of the dielectric function of a
material consisting of microscopic dipoles.

2.5 Example: Orientation Polarization
and Debye’s Equations

Let us assume a material that is built from microscopic permanent electric
dipoles. The dipoles are allowed to rotate freely with some damping. This
is the typical situation in a liquid built from polar molecules (for example
water). When no external electric field is applied, the statistical thermally
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activated movement of the dipoles will not be able to create a macroscopic po-
larization. However, in an external electric field, the dipoles will more or less
align with the field, creating a resulting macroscopic polarization. We shall
find the frequency dependence of the dielectric function (and consequently of
the optical constants) of such a material.

We will solve this task by means of (2.7). Because we still do not know
the response function κ(ξ), we start from the following thought experiment:

Let us assume, that a static electric field has been applied to the system
for a sufficiently long time, so that a static polarization of the liquid has been
well established. Let us further assume that the field is switched off at the
moment t = 0. We model this situation by means of the electric field:

E(t) = E0
[
1 − θ(t)

]
where θ(t) is a step function that has the value one for t ≥ 0 and zero else-
where. It makes no sense to assume that the polarization will vanish instan-
taneously with a vanishing external field. On the contrary, we shall assume,
that due to the thermal movement of the particles, the macroscopic polar-
ization decreases smoothly and asymptotically approaches the value of zero.
This situation may be described by an exponentially descending behaviour
with a time constant τ according to:

P (t) = P0 e− t
τ ; t > 0

Furthermore, from (2.5) we have:

P (t) = P0 e− t
τ = ε0

∞∫
0

κ(ξ)E0
[
1 − θ(t − ξ)

]
dξ

The only action of the step function is to reduce the integration interval:

P0 e− t
τ = −ε0E0

t∫
∞

κ(ξ) dξ

We differentiate with respect to time and make use of the identity:

f(x) =
d
dx

⎡
⎣ x∫

a

f(ξ) dξ

⎤
⎦

That leads us to the following expression for the response function κ(t):

κ(t) =
P0

ε0E0τ
e− t

τ ≡ κ0 e− t
τ (2.21)

Having found the response function, the further treatment is straightforward.
Equations (2.7) and (2.9) yield the dielectric function:
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ε(ω) = 1 + χ(ω) = 1 +

∞∫
0

κ(ξ) eiωξ dξ

= 1 + κ0

∞∫
0

e(iω− 1
τ )ξdξ = 1 +

κ0τ

1 − iωτ

or

ε(ω) = 1 +
χstat

1 − iωτ
(2.22)

where χstat is the static (ω = 0) value of the susceptibility. The real and
imaginary parts of the dielectric function may be written as follows:

Reε = 1 +
χstat

1 + ω2τ2
(2.23)

Imε =
χstatωτ

1 + ω2τ2

The thus obtained dielectric function represents a simplified version of De-
bye’s equations valid for the dielectric function in polar media. In Fig. 2.1, the
spectral shapes of real and imaginary parts of this particular dielectric func-
tion are presented. Figure 2.2 shows the corresponding optical constants. In
these figures, a static susceptibility of χstat = 80 has been assumed, similar to
what is valid in ordinary water. Obviously, the presence of permanent dipoles
in the medium is connected with a high static dielectric constant, while for
higher frequencies, the real part of the dielectric function may be essentially
lower. Thus, in the visible spectral range, water has a dielectric function with
a real part of approximately 1.77 and a refractive index of 1.33. This be-
haviour is consistent with the predictions from Debye’s equations, where the
refractive index is expected to steadily decrease with increasing frequency.

Fig. 2.1. Real and imaginary parts of the dielectric function according to (2.23)
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Fig. 2.2. Optical constants n and K for the dielectric function presented in Fig. 2.1,
but in a broader spectral region

A more interesting fact is seen from Fig. 2.1. The imaginary part of the
dielectric function has its maximum value exactly at the angular frequency
ω = τ−1. Consequently, the result of a spectral measurement (determining the
peak position of Imε) reveals information about the dynamic behaviour of the
system (the decay time of polarization). This is one example for the validity of
a more general fundamental principle, that in optics the spectral (χ(ω)) and
temporal (κ(t)) representations embody the same information and may be
transferred into each other. Indeed, (2.7) is in fact a Fourier transformation
of the response function, performed however only over a semi-infinite interval
for reasons of causality. One may formally multiply the response function
with a step-function:

κ̃(ξ) = κ(ξ)θ(ξ) (2.24)

The thus obtained modified (truncated) response function may be integrated
over the full time interval, so that we have:

χ(ω) =

∞∫
−∞

κ̃(ξ) eiωξdξ (2.25)

In (2.25), the susceptibility appears to be the Fourier-transform of the trun-
cated response function.

Let us make two final remarks concerning the conclusions from Chap. 2:
We supposed the time dependence of the fields according to e−iωt. As

a consequence, we defined the complex index of refraction as n + iK. The
same kind of theory may be built postulating a time dependence of the fields
as e+iωt. However, in this case the index of refraction will be n − iK. Both
approaches are equally correct, however, they shouldn’t be confused with
each other.
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A high extinction coefficient (high damping) is not necessarily connected
with a high Imε. For example, a real but negative dielectric function will result
in a purely imaginary refractive index. This seemingly exotic assumption is in
fact important in metal optics and will be treated in the section about total
internal reflection. Here the penetrating wave is indeed damped, but the light
is rather reflected than absorbed. Therefore, the generally accepted terminus
“absorption coefficient” may be misleading in special cases. In fact, for light
absorption it is essential that Imε �= 0. We will return to these questions later
in more detail.



3 The Classical Treatment
of Free and Bound Charge Carriers

3.1 Free Charge Carriers

3.1.1 Derivation of Drude’s Formula

In this section, we come to the discussion of an important problem in solid
state optics, namely the optical response of the free charge carrier fraction
(in many cases electrons) in condensed matter. This is of utmost significance
in metal optics, but of course, the optical properties of highly doped semi-
conductors may be influenced by free charge carriers as well.

Let us start with a more general statement. In Sect. 2.5, we derived equa-
tions that describe the optical response of permanent dipoles. In this chapter,
we consider free electrons. The next step will be to discuss the contribution of
bound electrons. As the result, we will have at least three models in hand each
being tailored for a very special case. But real matter is more complicated.
Thus, for example, metals have free and bound electrons. Analogously, the
optical properties of water are not only determined by the permanent dipole
moment of the water molecules. The relative movements of bound electrons
is important as well, and once water is a conductor for electrical current,
it must have a certain concentration of free charge carriers. Intramolecular
vibrations of the cores will also add their contribution.

Fortunately, as charges are additive, all the degrees of freedom present in
real matter will contribute their dipole moments to the final polarization that
is obtained as a sum over all dipole moments in the medium. Consequently,
the susceptibilities that correspond to different degrees of freedom (numbered
by j) add up to the full susceptibility, so that the dielectric function will be:

ε(ω) = 1 +
∑

j

χj(ω) , (3.1)

where the χj are the susceptibilities obtained for the corresponding group of
dipoles.

After this remark, let us turn to the discussion of the role of free electrons
in optics. The simplest derivation of the susceptibility of free electrons mov-
ing around positive atomic cores is based on Newton’s equation of motion.
As the cores are much heavier than the electrons, the cores will be considered
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as fixed, so that only electrons are in motion when a harmonic electric field
is applied.

Assuming, that the motion of electrons is confined to a region much
smaller than the wavelength, we may write for the movement of a single
electron:

qE = qE0 e−iωt = mẍ + 2γmẋ (3.2)

m and q are the mass and charge of the electron, and γ is a damping constant
necessary to consider the damping of the electrons movement. We assume,
that the electric field is polarized along the x-axis, hence we consider only
movements of the electron along the x-axis. For non-relativistic velocities,
the Lorentz-force may be neglected compared to the Coulomb-force, so that
only the latter is apparent in (3.2).

Assuming x(t) = xo e−iωt, we obtain from (3.2):

qE

m
= −ω2x − 2iγωx .

The oscillation of the electron around its equilibrium position thus induces
an oscillating dipole moment according to:

p = qx = −q2E

m

1
ω2 + 2iγω

.

If N is the number of electrons per unit volume (we will call it the concen-
tration of electrons), then the polarization P is given by

P = Np = −q2NE

m

1
ω2 + 2iγω

so that, according to (2.8), the susceptibility is:

χ(ω) = −Nq2

ε0m

1
ω2 + 2iγω

(3.3)

where the term
Nq2

ε0m
represents the square of the plasma frequency defined as:

ωp =

√
Nq2

ε0m
(3.4)

As in Sect. 2.5, we get a complex and frequency-dependent susceptibility. The
dielectric function is then given by:

ε(ω) = 1 − ω2
p

ω2 + 2iγω
(3.5)
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Fig. 3.1. Dielectric function and optical constants according to (3.5)

Figure 3.1 displays the principal shape of the real and imaginary parts of
the dielectric function from (3.5), as well as the optical constants. The most
striking feature appears in the refractive index, which is expected to be less
than one in broad spectral regions. In fact, the imaginary part of the complex
refractive index may be much larger than the real one. This is typical for
metals, and as it will be seen in Chap. 6, it causes the well-known metallic
brightness. Due to n <1, the phase velocity of light in metals may be higher
than in vacuum. This does not conflict with relativity, because light signals
(for example wave packets) travel in space with the group velocity, and not
with the phase velocity.

A simple discussion of (3.5) (which is sometimes called Drude’s function)
confirms the following asymptotic behaviour:

ω → ∞ : Reε → 1; Imε → 0; n → 1; K → 0 (3.6)

Note that this is exactly the same behaviour as it would follow from Debye’s
function (equation (2.23)). The reason is simple: Due to the finite inertness
of the electrons, they will not be able to comply with field oscillations that
are too rapid. Hence, for ω → ∞, the electrons will not interact with the
field, so that the field does not “feel” the electrons. For that reason, the
optical constants of the system approach those of vacuum (n = 1; K = 0).
The permanent dipoles, which are responsible for the dispersion described by
Debye’s formula (2.23), are much heavier than electrons and therefore even
more inert. For high frequencies, they will give no optical response as well.

The static case is more difficult to handle. Drude’s function (3.5) yields
the following behaviour:

ω → 0 : Reε → 1 − ω2
p

4γ2 ; Imε → ω2
p

2ωγ
; n ≈ K → ωp

2
√

ωγ
(3.7)
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In the static case, only the real part of the dielectric function approaches a
finite value, the other functions become infinitively large. This is intuitively
clear, because in a static electric field, the free electrons do not oscillate, but
move away from the cores, causing a finite electrical current, but infinitively
large dipole moments.

3.1.2 Extendted Detail: Another Evaluation of Drude’s Formula

As we have mentioned in Sect. 2.1, in optics it makes no sense to separate free
and bound electrons in Maxwell’s equations, because both types of electrons
perform oscillations around their equilibrium positions. At the same time, we
remarked that the static case (ω = 0) cannot be treated this way. To comply
with this particular situation, it is more convenient to discuss the current
density j than the induced dipole moments.

The definition of the polarization vector (induced polarization only) may
be written as:

P =
1
V

∑
l

ql(rl − r0l)

where V is the volume, and l counts all charge carriers contained in the
volume. ro is the equilibrium position of a charge carrier, and r its actual
position. Differentiating with respect to time leads to:

∂P

∂t
=

1
V

∑
l

qlṙl = j (3.8)

so that j = ∂P /∂t. Comparing equations (2.6) and (3.8), we conclude that for
harmonic fields, the relation between j and E must have the same structure
as between P and E. We therefore write in full analogy to statics:

j = σE (3.9)

σ is the conductivity. For a static field, that has been switched on for a long
time ago, one would expect a constant current density in the medium. After
switching off the field at the moment t = 0, the current will not instanta-
neously drop to zero, because of the inertness of the charge carriers. Instead,
the current density is expected to decay according to:

j = j0 e− t
τ

This situation is completely analogous to that discussed in Sect. 2.5, with the
only difference that we deal with current densities here and not with dipole
moments. We will therefore get an expression for the frequency-dependent
conductivity as:

σ(ω) =
σstat

1 − iωτ

analogous to (2.22). σstat is the familiar static value for the conductivity.
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This offers the possibility to derive Drude’s formula starting from the
conductivity. For harmonic fields, the derivative with respect to time may be
calculated according to the recipe:

∂

∂t
→ ∗(−iω)

From (3.8) we get for non-zero frequencies:

P =
∫

jdt =
j

−iω
=

σE

−iω
= − σstat

ω2τ + iω
E

and thus for the susceptibility:

χ(ω) = − σstat/ε0

ω2τ + iω
(3.10)

Comparing (3.3) and (3.10) yields the following relationships:

Nq2

ε0m
= ω2

p =
σstat

ε0τ
(3.11)

2γ = τ−1 (3.12)

Hence, electrical and optical properties of a “classical” metal are directly
related to each other. For typical metals, ωp is of the order 1015s−1, and
τ ∼ 10−13s.

We thus found another version of Drude’s formula, derived in a similar
way as we have derived Debye’s equations in Chap. 2. Nevertheless, there
remains the question: Why didn’t we use (2.7) or (2.25) directly in order to
obtain Drude’s formula?

The answer is given by these equations themselves. Evaluating the expo-
nential function in (2.25), we get:

χ(ω) =

∞∫
−∞

κ̃(ξ) eiωξdξ

(3.13)

=

∞∫
−∞

κ̃(ξ) dξ + iω

∞∫
−∞

κ̃(ξ)ξdξ +
(

−ω2

2

) ∞∫
−∞

κ̃(ξ)ξ2dξ + . . .

That means, our approach for the optical (high frequency) susceptibility cor-
responds to an infinite series according to:

χ(ω) = a0 + a1ω + a2ω
2 + a3ω

3 + . . . (3.14)

where the even orders in ω correspond to the real part, while the odd orders
determine the imaginary part of the susceptibility or the dielectric function.
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The aj-values are constants. For ω → 0, one has χ → a0. Therefore, as we
see from (3.7), Drude’s function cannot be described this way. For ω → 0 it
behaves like:

χDrude(ω) |ω→0 ≈ i
σstat

ε0ω

or

χDrude(ω) |ω→0 ≈ i
Nq2

ε0m

1
2γω

so that for a conductor, one would expect:

χconductor(ω) = i
σstat

ε0ω
+ a0 + a1ω + a2ω

2 + a3ω
3 + . . . (3.15)

This is generally incompatible with (2.25), but for sufficiently high (optical)
frequencies, the first term in (3.15) has no significance, so that (2.25) or (2.7)
remain valid. It is seen from (3.7), that already for ω > 2γ, a0 becomes larger
by modulus than the first term in (3.15).

The rather formal discussion performed in this section might seem not
relevant for applied spectroscopy practice. However, (3.15) will become im-
portant when the Kramers–Kronig-relationships will be evaluated (this will
be done in Chap. 5), so that we will have to return to this question anyway.

3.2 The Oscillator Model for Bound Charge Carriers

3.2.1 General Idea

Even in metals, most of the electrons are bound, although the free electrons
are utmost important for the specific optical behaviour of metals. As every-
body knows, metals like silver, gold and copper have quite a different optical
appearance, and this is a consequence of the response of the bound electron
fraction. Of course, the optical properties of dielectrics are exclusively deter-
mined by the motion of bound charge carriers.

There is a more general question concerning the different role of negative
electrons and positively charged cores. Generally, both electrons and cores
may perform movements when being excited by external electric fields. But
the cores are much heavier. In terms of classical physics, the vibrational
eigenfrequencies of a system are determined by the restoring forces and the
masses of the systems constituents. Assuming a typical core being 104 times
heavier than an electron, one would expect the eigenfrequencies of the core
motion approximately 100 times lower than that of electrons that are equally
tight bound (in terms of quantum mechanics, these are the valence electrons).
Therefore, at high frequencies, the movement of the cores may be neglected.
At lower frequencies (and this is usually the infrared spectral region), the
movements of the cores determine the optical properties of the material.
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On the other hand, not all electrons are equally tight bound. Although
this is again rather a quantum mechanical matter, we may formally assume,
that there are groups of electrons (core electrons) that suffer much higher
restoring forces than the other (the valence) electrons. Consequently, there
are different groups of electrons with different eigenfrequencies.

The oscillator model derived in the following is very general. It may be
applied to the intramolecular motion of cores (in infrared spectroscopy) as
well as to bound electrons. So that we will simply speak in the following on
induced dipole moments, no matter which is their physical origin.

So let us regard the motion of a charge carrier, which is bound to its
equilibrium position (x = 0) by an elastic restoring force. An oscillating field
may lead to small (x � λ) movements of the charge carriers, thus inducing
dipoles that interact with the field. In contrast to (3.2), the equation of motion
of a single charge carrier is now:

qE = qE0 e−iωt = mẍ + 2γmẋ + mω2
0x (3.16)

This is the equation for forced oscillations of a damped harmonic oscillator
with the eigenfrequency ω0, all other symbols have the same meaning as
before. Proceeding exactly in the same way as in Sect. 3.1, we obtain for a
single induced dipole moment p = qx:

p =
q2E

m

1
ω2

0 − ω2 − 2iωγ

Thus, the electric field induces plenty of microscopic dipoles, which form a
macroscopic polarization of the medium. Let us define the linear microscopic
polarizability β via:

p = ε0βE (3.17)

Then the polarizability turns out to be complex and frequency-dependent
according to:

β =
q2

ε0m

1
ω2

0 − ω2 − 2iωγ
(3.18)

Equation (3.18) describes a resonant behaviour of the microscopic dipole,
when the angular frequency ω of the field approaches the angular eigenfre-
quency of the dipole. In this resonance condition, the interaction between
radiation and matter is expected to be most effective.

Note that the linear polarizability has the dimension of the volume. The
model that was described here is sometimes called the Lorentzian oscillator
model.

3.2.2 Microscopic Fields

From (3.17) and (3.18), it seems straightforward to calculate the macroscopic
polarization vector P from the induced dipole moments. After that, we may
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find the susceptibilities. But there is a further problem in condensed matter
optics, which concerns the electric field fixed in (3.17)

The problem is as follows: (2.5) describes the macroscopic response of
the medium, and the electric field fixed in (2.5) is the average field in the
medium. It is formed from the external field and the field of the dipoles in
the medium. On the contrary, (3.17) describes a microscopic dipole moment,
and the field is the microscopic (or local) field acting on the selected dipole.
The question is, whether or not these fields are identical.

In the general case, these fields are different, and the aim of this section
is to derive an equation that allows us to calculate the microscopic field for
the special case of optically isotropic materials.

Let us regard a single induced dipole in the medium. The field acting
on the dipole is built from two constituents: the external field and the field
caused by all other dipoles, except the considered one. Of course, nobody
would start the calculation from the external field, subsequently adding the
response of 1023 dipoles. Instead, we make use of the superposition principle.
We will subtract the field of our regarded dipole from the average field in the
medium, and this way we can find the field that is acting on the dipole itself.

In continuum electrodynamics, this calculation is easy to perform, regard-
ing the dipole as a sphere (in accordance with the assumed isotropy) with a
diameter much smaller than the wavelength, so that the average field E may
be assumed to be spatially homogeneous. This is the so-called quasistatic
case, where the field is oscillating with time, but homogeneous with respect
to the dimensions of the discussed dipole. The latter could be, for example, an
elementary cell in a cubic crystal, a molecule with a rather spherical shape,
or simply an atom.

In Fig. 3.2, this situation is presented. On the left, we have the continuous
medium with a small microscopic spherical hole inside. The field inside this
hole corresponds to the mentioned microscopic field, because it may be con-

Fig. 3.2. Calculation of the microscopic field
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sidered as the field in the compact medium less the field in a homogeneous
polarized sphere.

We therefore have:

Emicr = E − Esphere (3.19)

As the field in the polarized sphere is equal to −P/3ε0, we obtain from (3.19)

Emicr = E +
P

3ε0
(3.20)

Finally, we find for the macroscopic polarization P :

P = Np = Nε0βEmicr = Nε0βE +
Nε0β

3ε0
∗ P

P =
Nβε0E

1 − Nβ

3
where N is again the concentration of the dipoles. The susceptibility is:

χ =
Nβ

1 − Nβ

3 (3.21)

β =
q2

ε0m

1
ω2

0 − ω2 − 2iωγ

where β is given by (3.18).
For small concentrations (N → 0) the susceptibility equals Nβ, which is

valid for diluted gases.
Before coming to the discussion of (3.21), let us make one remark. Because

of P = ε0χE = ε0(ε − 1)E, from (3.20) it follows immediately that

Emicr =
ε + 2

3
E (3.22a)

This is valid for the assumed spherical cavity in the continuum. For ε > 1,
the microscopic field exceeds the average field due to the surface charges at
the cavity borders, as indicated in Fig. 3.2. In fact, our treatment also allows
to account for simple cases of optical anisotropy. In this case, the spherical
cavity shape must be replaced by another suitable cavity shape, which leads
to modifications in (3.22a). Thus, for a thin needle-like cavity parallel to E,
the surface charges at the bottom and the top of the cavity are of negligible
influence, so that one has

Emicr = E (3.22b)

On the contrary, in a pancake-shaped cavity perpendicular to E, the surface
charges in the cavity would completely compensate those at the outer bound-
ary of the dielectric, so that the microscopic field inside the cavity equals
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Table 3.1. Depolarisation factors L. For completeness, the general expression for
calculating L for an ellipsoid along the three main axes la, lb, and lc is included
(without derivation)

Type of
cavity

E parallel to the cavity axis E perpendicular to the cavity axis

Ellipsoid
with main
axes
la, lb, lc

Lξ =
lalblc

2

∞∫
0

ds(
s + l2ξ

) √
(s + l2a) (s + l2b) (s + l2c)

; ξ = a, b, c

Sphere
1/3

Needle
0 1/3

Pancake
1 0

the external electric field that would be measured outside the dielectric. We
therefore have for a pancake cavity:

Emicr = εE (3.22c)

These equations may be written in a generalized form according to:

Emicr = [1 + (ε − 1)L]E (3.22d)

where L is the so-called depolarisation factor. For important cases, the de-
polarisation factors are summarized in Table 3.1.

3.2.3 The Clausius–Mossotti and Lorentz–Lorenz-Equations

From (3.21), we find the dielectric function of a medium with respect to local
field effects according to:

ε = 1 +
Nβ

1 − Nβ

3

(3.23)

This gives us the Clausius–Mossotti-Equation:

ε − 1
ε + 2

=
Nβ

3
(3.24)
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or the Lorentz–Lorenz-Equation

n̂2 − 1
n̂2 + 2

=
Nβ

3
(3.25)

n̂ = n + iK

The significance of these rather simple equations is in that they relate mi-
croscopic optical parameters (the polarizability β) to macroscopically mea-
surable parameters (optical constants). In other words, measurements on the
macroscopic scale, which yield the optical constants of a material, give further
access to microscopic parameters such as molecular or atomic polarizabilities.
In fact, this is the point from where analytical optical spectroscopy starts.

Let us have a look at the consequences. We have a microscopic polarizabil-
ity according to (3.18) and a dielectric function from (3.23). In combination,
that yields:

ε(ω) = 1 +
ω2

p

ω2
0 − ω2 − 2iγω − ω2

p

3

≡ 1 +
ω2

p

ω̃2
0 − ω2 − 2iγω

(3.26)

where

ω̃2
0 ≡ ω2

0 − ω2
p

3
(3.27)

is the resonance frequency valid for the dielectric function. The dielectric
function has exactly the same spectral shape as the polarizability, but the
resonance position in ε is red-shifted with respect to that of the polarizability.
The larger the density, the larger is the red-shift. For arbitrary depolarisation
factors L, (3.27) generalizes to:

ω̃2
0 ≡ ω2

0 − Lω2
p

Figure 3.3 shows the real and imaginary parts of a dielectric function accord-
ing to (3.26), and Fig. 3.4 the optical constants. We see, that in the vicinity
of the resonance frequency, the imaginary parts of both the dielectric func-
tion and the index of refraction show a local maximum. That means, that
at this frequency the light wave is effectively damped. The imaginary part
of the dielectric function therefore describes an absorption line with a char-
acteristic shape, which is called a Lorentzian line. In the region of strong
damping, the refractive index n decreases with increasing frequency (anoma-
lous dispersion). On the contrary, in the transparency regions, where damping
is negligible, n increases with increasing frequency (normal dispersion). For
high frequencies, the relationships (3.6) are again valid.

We will now have to make a few remarks. First of all, we derived two clas-
sical models for the dielectric function that were based on classical equations
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Fig. 3.3. Dielectric function according to (3.26)

Fig. 3.4. Optical constants, according to Fig. 3.3

of motion for the charge carriers. In both models, we introduced energy dissi-
pation by the damping factor γ. As seen from both equations (3.5) and (3.26),
the introduction of energy dissipation leads to a non-zero imaginary part of
the dielectric function. On the contrary, a non-vanishing Imε is only possible
with a non-zero damping constant. Therefore, it is the imaginary part of the
dielectric function that indicates the presence of light absorption in the sense
that energy is transferred from the electromagnetic field to specific degrees
of freedom in the medium. The large extinction coefficient in Fig. 3.1 (metal
optics) rather leads to high reflection than to light absorption, because the
imaginary part of the dielectric function is negligible in that spectral region.

The next remark concerns the local field effects discussed in Sect. 3.2.2.
In our treatment, we assumed that the properties of the microscopic dipole
itself do not change with increasing particle density. This is clearly a classi-
cal approach, because in reality chemical reactions start to occur when the
molecules come close enough together for their electronic shells to overlap.
However, in materials without covalent bonding, this simple theory (which is
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Table 3.2. Recommendations on when to apply the local field correction, as col-
lected from relevant textbooks. Here, E denotes the energy

Source System Applicability of the local
field correction

R Feynman
(Noble Price Winner)

Metal no

The Feynman lectures
of physics

Dielectric yes

N. Bloembergen
(Noble Price Winner)

Ionic crystals
(for example CuCl)

rather yes

Nonlinear Optics Valence electrons in
crystalline semiconductors
such as GaAs

no

Liquids yes
Solids with a complicated
elementary cell

rather yes

A.S. Davydov Quantum
mechanics

Systems with discrete
energy levels

yes

Solid state
theory

Systems with energy bands
E = E(k)

no

in fact 150 years old) may pretty work up to packing densities characteristic
for a solid.

A further remark concerns the Drude-function as derived in the previous
section. In this case, we did not distinguish between microscopic and average
macroscopic fields. Why?

At least at low frequencies, a classical free electron may travel a consid-
erably long way until the changing field direction forces it to return to its
starting position. Therefore, during an oscillation, the electron rather feels
the average field than a local one. The space “probed” by an oscillating free
electron resembles the needle-like cavity shape with a vanishing depolarisa-
tion factor, so that (3.22b) rather holds than (3.22a). But this is a formal
argument, and it remains unclear how to deal with high frequencies or a very
low field strength.

In this situation we must remember that we deal with models. In every
special case, one must accurately check whether or not the application of
a given model makes sense. Concerning the validity of (3.22a), there is in
fact no general recipe when it should be applied and when not. As a thumb
rule, in optically isotropic media with well bound electrons, the application of
(3.22a) makes sense. Presently, there is no general theory valid for media with
any symmetry or more freely moving charge carriers. Table 3.2 summarizes
some recommendations from the literature, concerning the application of the
mentioned local field theory.
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Fig. 3.5. Principal shape of the optical constants in different spectral regions

Table 3.3. Overview on spectral regions. The wavelength (and related) data may
slightly differ in different sources

spectral re-
gion

vacuum wave-
length λ
nm

wavenumber ν
ν = 1/λ
cm−1

angular frequency ω
ω = 2πνc
s−1

origin of
absorption
(examples)

Far
Infrared
FIR

106–5 × 104 10–200 1.9 × 1012–3.8 × 1013 free carriers;
orientation

Middle
Infrared
MIR

5 × 104–2.5 × 103 200–4000 3.8 × 1013–7.5 × 1014 free carriers;
vibrations

Near
Infrared
NIR

2.5 × 103–8 × 102 4000–12500 7.5 × 1014–2.4 × 1015 free carriers;
vibrational
overtones

Visible
VIS

8 × 102–4 × 102 12500–25000 2.4 × 1015–4.7 × 1015 excitation of
valence

Ultra-violet
UV

4 × 102–10 25000–106 4.7 × 1015–1.9 × 1017 electrons

X-ray X 10– 0.005 106–2 × 109

(unusual)
1.9 × 1017–3.8 × 1020 excitation of

core electrons
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3.3 Probing Matter in Different Spectral Regions

In summary, we are now familiar with three classical models that are useful
to describe the optical properties of condensed matter. The orientation and
reorientation of permanent molecular dipoles is very inert, and it will cause a
remarkable optical response only in the microwave (MW) or far infrared (FIR)
spectral regions. In liquids and also in some solids (for example ice) it may be
tackled by means of Debye’s equations. Drude’s function describes the optical
properties of free charge carriers, and depending on their concentration, it
may be of use from the microwave up to the visible (VIS) spectral regions.
The Lorentzian oscillator model is suitable for the description of absorption
and dispersion in the presence of distinct spectral lines. In the middle infrared
(MIR), it may be used to describe the response of core vibrations in molecules
and solids. The excitation of valence electrons in atoms or molecules causes
absorption lines in the visible or ultraviolet (UV) spectral regions, while core
electron excitation dominates the x-ray region. An overview on the possible
optical spectrum of condensed matter is given in Fig. 3.5. More quantitative
information may be obtained from Table 3.3.
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4.1 Natural Linewidth

From the dispersion models derived so far, the oscillator model is the most
important one. Formally, it even contains the Drude model as the particular
case ω̃0 = 0. We will therefore use this chapter to discuss in more detail the
physics that are hidden in the simple equation (3.26).

Let us start from (3.18) for the polarizability β obtained for a single mi-
croscopic oscillator. If damping is weak, we have γ2 � ω2

0 . In the immediate
vicinity of the resonance frequency, we assume ω0 ≈ ω, and then the imagi-
nary part of the polarizability becomes:

Imβ ≈ q2γ

2ω0ε0m

1
(ω0 − ω)2 + γ2

This is a symmetric lineshape called a Lorentzian line. It describes the shape
of an absorption line in terms of the classical oscillator model. As already
mentioned in the previous section, the imaginary part of the dielectric func-
tion has the same shape as the polarizability, and such a lineshape is presented
in Fig. 3.3 as the dashed line. Apart from resonance, Imβ and Imε decrease
and achieve 50% of the maximum value at the frequencies:

ω − ω0 = ±γ

The value 2γ therefore represents the so-called Full Width at Half Maximum
(FWHM) and is an important characteristic of a spectral line. In the present
version of our classical theory, the width of a spectral line is exclusively
determined by damping.

The FWHM as defined before is closely related to the decay time of the
damped harmonic oscillator. Indeed, let us assume that the oscillator has
been excited in the past and is now performing damped oscillations. Clearly,
the energy will dissipate with time from the oscillator. The equation of free
motion of a damped oscillator will be:

mẍ + 2γmẋ + mω2
0x = 0

and may be solved by means of the approach:
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x = x0 eξt

That leads to:

ξ = −γ ±
√

γ2 − ω2
0 = −γ ± i

√
ω2

0 − γ2

We further assume weak damping:

ω0 � γ2

and obtain

x ≈ x0 e−γt e±iω0t (4.1)

Equation (4.1) described the expected damping of the oscillation amplitude,
with a decay time of τamplitude = γ−1. As the energy is proportional to the
square of the amplitude, it will dissipate with half the decay time, so that we
get:

τE = (2γ)−1 (4.2)

Hence, the decay time for the energy τE equals the reciprocal value of the
FWHM, when the latter is given in angular frequency units. The longer the
energy remains in the system, the narrower is the corresponding absorption
line. The linewidth defined by (4.2) is called the natural linewidth of the os-
cillator. This is a further example for the strong interconnections between the
time response of a system and its spectral behaviour. If one is able to measure
the natural linewidth experimentally, the decay time may be calculated.

But what use do we have from the decay time? We defined the decay
time as the time necessary for the energy to dissipate from a microscopic
oscillator. More accurately, it is the time when the energy has been decreased
for e times. If we regard atoms or molecules as the microscopic oscillators, this
classically defined decay time corresponds to the quantum mechanical lifetime
of an excited atomic or molecular level. As it will be shown in Chap. 10,
that lifetime in turn is connected to functions that describe the dynamics
of molecules or atoms on a quantum mechanical level, and therefore yields
information on their fundamental physics.

For intensive spectral lines, the lifetime is about 10−8s. For so-called
metastable levels, it may be of the order of 10−1 to 10−5s.

4.2 Extended Detail: Homogeneous and Inhomogeneous
Line Broadening Mechanisms

In practice, it is not so easy to measure the natural linewidth determined by
(4.2), because in real matter it is not only the energy dissipation that causes
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the finite linewidth. Other mechanisms may be of importance as well. First
of all, we will have to consider that in most measurements we have not only
one single oscillator, but rather an assembly. This makes the situation more
complicated. We have already postulated that the single oscillator may loose
its energy, but if there are several excited oscillators, they may come into
collisions that destroy the phase of the vibration, but not the amplitude. If
several such phase interruptions occur during τE , a line broadening will occur,
because the phase interruptions distort the periodicity, so that the Fourier
spectrum of the oscillation of the discussed molecule becomes broader. If all
oscillators are in identical physical conditions, then all of them will suffer
this broadening mechanism in an equal manner. In this case we speak on
homogeneous line broadening.

There is another situation when the oscillators are in different physi-
cal conditions. For example, in disordered condensed matter, the particles
(molecules, atoms) may “feel” different local fields, which leads to different
spectral shifts according to (3.27). As a consequence, there are groups of oscil-
lators absorbing at slightly different frequencies. Such an assembly may have
a very broad absorption line, although every single oscillator shows a narrow
line. The macroscopically detected broad line appears to be a superposition
of a tremendous number of narrow lines resulting from oscillators that are
placed in different physical conditions. Such a line broadening is called an
inhomogeneous one. Clearly, in the case of inhomogeneous broadening, the
line shape may significantly differ from the Lorentzian line shape.

As standard examples of a homogeneous and an inhomogeneous line
broadening mechanism, the collision and Doppler broadening mechanisms
of spectral lines in gases will be briefly addressed.

Collision Broadening

Stochastic elastic collisions between particles destroy the phase of their vi-
brations. Let us assume that the average time between two collisions τcollision
is much smaller than the energy decay time τE . In the case that the macro-
scopic polarization decays according to e−t/τcollision , according to (4.1), we get
a linewidth

Γ = τ−1
collision ⇒ FWHM ≡ 2Γ =

2
τcollision

(4.3)

The thus defined FWHM is called the homogeneous width of a spectral line.
As our treatment of dielectric functions or the optical constants always con-
cerns a large number of oscillators, starting from now we will use Γ in the
dielectric function rather than γ that appeared in the microscopic oscillator.
In collision broadening, the Lorentzian spectral shape is preserved.

In the general case, when both energy dissipation and collision broadening
contribute to the observed FHWM, a more general equation is obtained as a
merger between equations (4.2) and (4.3):
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FWHM ≡ 2Γ =
2

τcollision
+

1
τE

(4.4)

According to (4.4), the previously discussed natural linewidth appears as a
particular case of the homogeneous linewidth with negligible phase distortion.

Doppler Broadening

In contrast to collision broadening, the Doppler broadening in gases is an
inhomogeneous broadening mechanism. As in equilibrium conditions the dis-
tribution of gas particles with respect to their velocities is symmetric, some
of them fly in direction to the line source, and some of them away from the
source. Due to the Doppler effect, the molecules moving in direction to the
source may absorb at a slightly lower light frequency than those moving away.
Hence, the molecules differ with respect to the physical condition essential
for the process of light absorption. The full absorption line will be composed
from a large number of narrow lines shifted with respect to each other due
to the Doppler effect. This is a typical situation for an inhomogeneous line
broadening.

This particular case may be mathematically treated in an exact manner.
Let us assume that the light wave moves along the z-axis. Due to Maxwell’s
distribution, the number of molecules with a given z-component of their ve-
locity is:

N (νz) dνz ∝ e− mν2
z

2kBT dνz

m is the mass of a molecule, kB Boltzmann’s constant, and T the absolute
temperature. Let ω0 be the resonance frequency of the molecule in rest. Due
to the movement along z, the molecule absorbs no longer at ω0, but at a
shifted frequency ωD:

ωD = ω0

(
1 +

νZ

c

)
The number of molecules absorbing at ωD is then:

N (νZ) d (νZ) = N (νZ)
dνZ

dωD
dωD ≡ N (ωD) dωD

so that we finally get:

N (ωD) =
[
N (νZ)

dνZ

dωD

]
νZ=f(ωD)

(4.5)

Expression (4.5) reveals the probability density distribution for the
Doppler-shifted absorption frequency ωD in an assembly of gas molecules
or atoms. In the case that this distribution is considerably broader than the
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homogeneous linewidth, the absorption line shape of the assembly will be
dominated by (4.5). We then find a Gaussian spectral shape with an FWHM
given as:

∆ωD =
2ω0

c

√
2 ln 2kBT

m

which is, of course, dependent on the temperature.
These two examples were to show, that the important information on

the natural linewidth is not easily accessible by the experiment, because line
broadening mechanisms occur that broaden the line and may even change
the spectral shape. For Doppler broadening, we got a Gaussian lineshape, but
other lineshapes are possible as well in inhomogeneously broadend assemblies.

4.3 Oscillators with More Than One Degree of Freedom

We will now generalize the oscillator model to the so-called multi-oscillator
model. Instead of one resonance frequency, we have now a set of M resonance
frequencies {ω0j} for each oscillator, and the natural generalization of (3.25)
becomes:

β =
q2

ε0m

M∑
j=1

fj

ω2
0j − ω2 − 2iωΓj

=
3
N

n̂2 − 1
n̂2 + 2

=
3
N

ε − 1
ε + 2

(4.6)

The factor fj describes the relative strength of the absorption lines caused
by the different degrees of freedom. If we deal with a molecule, for exam-
ple, different normal vibrations of the cores or various electronic oscillations
may thus be taken into account. Figure 4.1 compares the dispersion of the
dielectric functions for single- and multioscillator models.

Fig. 4.1. Comparison between the dielectric functions for a single- (left) and mul-
tioscillator (right) models
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The static value of the dielectric function is influenced by all resonances
and may be calculated assuming ω = 0 in (4.6):

βstat =
q2

ε0m

M∑
j=1

fj

ω2
0j

=
3
N

εstat − 1
εstat + 2

By the way, this expression describes the previously excluded case of ferro-
electrics as the limiting case βstat → 3N−1. In this limit, εstat → ∞.

4.4 Sellmeier’s and Cauchy’s Formulae

This section will not yield any new physics. There exists a variety of common
dispersion formulae that may be regarded as special cases of (4.6). They are
often cited in the literature, so that it is worth to mention some of them.

As seen from Fig. 4.1, in the multioscillator model there may be spectral
regions where the dielectric function is almost real. This is the case when the
condition:

(ω0j − ω)2 � Γ 2
j ∀j

is fulfilled. These are the transparency regions of real materials, which are
utmost important for their use as optical materials. In that non-resonant
case, the dielectric function following from (4.6) may be simplified.

Let us start from the dielectric function of the multioscillator model.
Generally, from (4.6) it follows that the dielectric function may be written as:

ε = 1 +
M∑

j=1

f̃j

ω̃2
0j − ω2 − 2iωΓj

. (4.7)

Again, f̃j is responsible for the intensity of the spectral lines. It does not
make sense to accurately write out the full classical intensity expressions that
would follow from (4.6) during the following derivations, because relevant ex-
pressions have to be obtained later in terms of the semiclassical mechanical
treatment. We only mention here that expression (4.7) may always be ob-
tained from (4.6) by an expansion into partial fractions. That will also give
the final expressions for f̃j and ω̃0j , respectively. Note that expression (3.27)
is not valid if more than one resonances are involved.

Far from any resonances, (4.7) may be written as:

ε = Reε ≈ 1 +
M∑

j=1

f̃i

ω̃2
0j − ω2

Imε = 0

Replacing ω by λ via

ω = 2π
c

λ
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Fig. 4.2. Applicability region of equations (4.8) and (4.9) (left) and measured
refractive index of an optical glass (right)

and utilizing

λ2

λ2 − λ̃2
0j

≡ 1 +
λ̃2

0j

λ2 − λ̃2
0j

.

Equation (4.7) may be written as:

ε − 1 = n2 − 1 = a +
∑ bj

λ2 − λ̃2
0j

(4.8)

where a and bj are constant coefficients. They are interconnected with each
other due to the requirement that the refractive index must approach one
when the wavelength approaches zero. Equation (4.8) is known as Sellmeier’s
dispersion formula. In Fig. 4.2, an example for the applicability of (4.8) is
sketched.

Another common dispersion formula is obtained expanding (4.8) into a
power series. We rewrite (4.8) according to:

n2(λ) = 1 + a −
∑

λ̃0j>λ

bj

λ̃2
0j − λ2

+
∑

λ̃0j<λ

bj

λ2 − λ̃2
0j

where the first sum contains the long-wavelength resonances, and the second
one the short-wavelength ones. Expanding the first sum into a power series

of
(
λ/λ̃0j

)2
and the second sum into a series of

(
λ/λ̃0j

)−2
, by means of

1
1 − x

= 1 + x + x2 + x3 + . . .

we find

n2 = A + Bν2 + Cν4 + . . . − B′ν−2 − C ′ν−4 − . . . (4.9)
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Here, the A-, B- and C-values are new constants. Equation (4.9) is again ap-
plicable in the range indicated in Fig. 4.2. For illustration, the experimentally
determined refractive index of an optical glass is also presented. More details
on this subjects will be given in Chap. 6.

Sometimes, (4.9) is called Cauchy’s dispersion formula. In other sources,
the terminus ‘Cauchy’s formula’ is only applied to gases, where the refractive
index is close to one because of the low particle concentration. In this case,
we have:

n2 − 1 = (n + 1) (n − 1) ≈ 2(n − 1)

so that instead of (4.9) one obtains:

n = A + Bν2 + Cν4 + . . . − B′ν−2 − C ′ν−4 − . . . (4.10)

where the A-, B- and C-values generally differ from those in (4.9).
Another version of such simplified dispersion equations is often applied

in the infrared spectral region. In resonance spectroscopy, it makes sense to
separate the resonant contributions in (4.7) from the rest of the full dielectric
function. These are the terms for which ω̃0j ≈ ω. We thus define the resonant
contribution to the susceptibility as:

χres ≡
∑

ω≈ω̃0j

f̃j

ω̃2
0j − ω2 − 2iωΓj

The other terms in the sum in (4.7) form the nonresonant contribution χnr.
We find:

ε(ω) = 1 + χres(ω) + χnr(ω)

In the infrared, the non-resonant contribution mainly originates from high-
frequency electronic resonances. It is therefore a common practice to neglect
the dispersion of the non-resonant terms and to define a purely real ‘back-
ground’ dielectric function ε∞ as:

ε∞ = 1 + χnr

In this language, we may rewrite the dispersion formulae derived so far in
the following manner:

Debye: ε = ε∞ +
εstat − ε∞
1 − iωτ

Drude: ε = ε∞ −
σstat

ε0

ω2τ + iω

Single-Lorentz-Oszillator: ε = ε∞ +
f̃

ω̃2
0 − ω2 − 2iωΓ
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All these equations represent special cases of the previously discussed equa-
tion (3.1). In the particular form as written here, they may be approximately
valid in the frequency region where the separated polarization mechanism is
close to resonance. They are not appropriate for describing the asymptotic
behaviour far from resonance.

4.5 Optical Properties of Mixtures

4.5.1 Motivation and Example from Practice

In practice, one often has to deal with situations where the optical proper-
ties of material mixtures are of interest. It is naturally to assume, that the
optical constants of the mixture represent some kind of superposition of the
optical constants of their constituents. The question is, how to superimpose
the optical constants of the constituents?

First of all, let us assume that each of the constituents numbered by j
occupies a certain volume fraction Vj of the material, and this volume fraction
determines the filling factor pj of the material via:

pj ≡ Vj

V

where V is the full volume occupied by the mixture. Obviously,∑
j

pj = 1

One could now assume that it makes sense to superimpose the dielectric
functions of the constituents linearly to obtain the so-called effective dielectric
function of the mixture via:

εeff =
∑

j

pjεj (4.11)

Let us look at an example how such a simple approach would work.
We regard a material that is composed from aluminum oxide Al2O3 with

embedded small silver particles. The terminus ‘small’ means that the di-
ameter of the particles and their average distances are small compared to
the wavelength, so that the material appears to be optically homogeneous,
although it might be heterogeneous on a nanometer scale. Such composite
materials are quite easy to produce by evaporation in vacuum conditions and
surprise by their beautifully coloured appearance. Of course, for practical ap-
plications (for example in absorber designs) one must accurately know their
optical constants, so that this example will accompany us throughout this
section.
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Fig. 4.3. TEM-image of a composite thin film built from Al2O3 with embedded
isolated silver particles

But before starting with optics, let us have a look at the real structure
of such a composite material. Figure 4.3 shows a transmission electron mi-
croscopy (TEM) image of this material. The bar in the left corner on the
bottom of the image indicates a length of 20 nm. In this image, the silver
particles are seen as dark spots. Obviously, they differ from each other in
size, shape and relative orientation.

Nevertheless, the cluster size is well below the wavelength in the visi-
ble spectral region, so that we will treat the material as optically homoge-
neous. In particular that means, that we may make use of the quasistatic
approximation. In the present sample, the filling factor of the silver fraction
is approximately 0.3. Accordingly, that of Al2O3 is 0.7.

Let us now see how (4.11) will work. Figure 4.4 presents the dielectric
functions from the individual constituents of the mixture (Ag and Al2O3).
The imaginary part of the dielectric function of Al2O3 is negligible in the
discussed spectral range when compared to the real part, so that it is not
shown in the figure. The dielectric function of silver is obviously dominated
by a Drude term (compare figure 3.1) while the dispersion of Al2O3 could be
close to the Sellmeier-type dispersion sketched in the central region of Fig. 4.2.

It is now straightforward to apply (4.11) with the mentioned filling factors.
The result is shown in Fig. 4.5, together with the experimentally determined
data.

As seen from Fig. 4.5, the agreement between experiment and theory needs
some improvements. Soft phrases of this kind in any scientific work always
have the meaning: there is no agreement at all. Consequently, at least in
the present example, the simple linear superposition of dielectric functions to
model the optical behaviour of a mixture does not work at all.
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Fig. 4.4. Dielectric functions of Ag and Al2O3

Fig. 4.5. Dielectric function of the composite material

But what is wrong? Is this the moment, where we have to turn to the
quantum mechanical description? Or is there any explanation in the frame-
work of the classical theory?

First of all, let us remember that (4.11) has not been derived, but purely
guessed. And the guess was wrong, at least in application to the system shown
in Fig. 4.3.

Secondly, let us remark that (fortunately) there is still no need to apply
the apparatus of quantum mechanics. The behaviour of the dielectric function
from Fig. 4.5 may be reproduced in terms of classical electrodynamics, but
only after serious modifications in our theoretical description of the optical
behaviour of the composite. By the way, let us state in advance, that (4.11)
may work well in particular cases, which will be specified later. Our task at
the moment is rather to understand what was wrong, and to derive a more
general equation for the dielectric function of mixtures as (4.11).

A glance at the dispersion shown in Fig. 4.5 already reveals a crucial
point: The dielectric function resembles the shape like shown in Fig. 3.3, so
that it is the oscillator model that could be suitable to the system. But
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Fig. 4.6. TEM-image of a composite thin film built from Al2O3 with embedded
percolated silver particles

that has been derived for bound electrons. On the contrary, the spectral
behaviour of bulk silver is close to that of a Drude metal and therefore rather
determined by free electrons. The key point is, that due to the confinement
in small particles (clusters) as shown in Fig. 4.3, the ‘free’ electrons are not
really free, but rather ‘bound’ in the clusters. When applying a static electric
field, no remarkable electrical current would flow through such a system.
Consequently, the straightforward implementation of the dielectric response
of silver into (4.11) cannot be correct.

It is easy to give an experimental cross-check on the validity of this as-
sumption. The only thing we must do is to prepare a system from the same
material in such a manner that the silver particles are not isolated from each
other, but form a closed network so that a direct current could flow (perco-
lation of the clusters). Such a system is demonstrated in Fig. 4.6.

If our assumption was true, then the optical behaviour of this system
should be completely different from that in Fig. 4.3 (and perhaps closer to
that predicted by (4.11)). Figure 4.7 answers this question.

Quite obviously, the dielectric function of the composite material is sensi-
tive to the morphology of the composite. Although the constituent materials
are essentially the same, the optical behaviour of the systems from Fig. 4.3
and 4.6 are completely different from each other. Clearly, in (4.11), the mor-
phology doesn’t play any role, and that might be the mistake we have made
so far. By the way, the output from (4.11) is at least qualitatively comparable
to the behaviour of the percolated system. Hence, it will now be our task to
derive a more general sophisticated mathematical apparatus suitable for the
description of the optical properties of material mixtures.
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Fig. 4.7. Dielectric function of the material shown in Fig. 4.6

4.5.2 Extended Detail: The Maxwell Garnett, Bruggeman,
and Lorentz–Lorenz Mixing Models

Let us have one further glance at Fig. 4.3. Obviously, there are particles of one
material (the inclusions) that are embedded in another material (the host). In
complete analogy with the philosophy from Sect. 3.2.2, we will start our treat-
ment with the discussion of spherical inclusions. And we will again assume,
that the inclusions may be regarded as polarized spheres in a homogeneous
electric field (quasistatic approximation). The difference to Sect. 3.2.2. is, that
the sphere is now embedded in a host with another dielectric function.

That leads to a modification in the expression of the microscopic field.
Instead of (3.22a) we now have:

Emicr = ε+2εh

3εh
E (4.12a)

Here, E is the average field in the sphere, ε the dielectric function of the
inclusion material, and εh that of the host. If the host dielectric function is
equal to 1, then (4.12a) and (3.22a) are identical. The derivation of (4.12a)
may be found in textbooks on electrodynamics.

In order to make the discussion complete, we present the analogue to
(3.22d) for other inclusion shapes:

Emicr = εh+(ε−εh)L
εh

E (4.12b)

where L has the same meaning as in equation(3.22d) and Table 3.1. In par-
ticular, for L = 0 (needle) we have Emicr = E, and for L = 1 (pancake)
εhEmicr = εE. These are the familiar boundary conditions for the electric
field tangential and normal to a surface.

The last step is to calculate the polarization. Every inclusion may be
characterized by its linear polarizability β. Because the polarizabilities of the
inclusion and the host βh are different, an excess dipole moment is formed at
the boundary of the inclusion. It may be calculated via
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p = ε0(β − βh)Emicr = ε0(β − βh)
εh + (ε − εh)L

εh
E (4.13)

Let N be the number of inclusions per occupied volume. Their dipoles con-
tribute to the full polarization according to:

Np = ε0(χ − χh)E = ε0(ε − εh)E = Nε0(β − βh)
εh + (ε − εh)L

εh
E

From here we find immediately:

(β − βh) = εhV
(ε − εh)

εh + (ε − εh)L

Here, V is the average volume occupied by a single inclusion. Let us now
assume that we have different kinds of inclusions numbered by j, each of
them polarizing in the same host material. They cause the full polarizability

∑
j

(βj − βh) = εh

∑
j

Vj
(εj − εh)

εh + (εj − εh)L
(4.14)

At the same time, the medium may be thought to be built from identical
structural units, embedded into the host medium occupying a volume V
and having some average ‘effective‘ dielectric function ε. Of course, their
polarizability β must be equal to what is supplied by the real dipoles. Hence,
we assume for the ‘effective’ medium:

β − βh = εhV
(ε − εh)

εh + (ε − εh)L
; V =

∑
j

Vj (4.15)

and demand: ∑
j

(βj − βh) = β − βh (4.16)

Then, from (4.14)–(4.16) we finally obtain the general mixing formula:

(ε − εh)
εh + (ε − εh)L

=
∑

j

pj
(εj − εh)

εh + (εj − εh)L
(4.17a)

For spherical inclusions, L = 1/3, and (4.17a) becomes:

ε − εh

ε + 2εh
=
∑

j

pj
εj − εh

εj + 2εh
(4.17b)

Equations (4.17a) or (4.17b) represent general optical mixing formulae. Of
course, all dielectric functions here may be complex and frequency depen-
dent. The effective dielectric function of the mixture appears to depend on
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the dielectric functions of the constituents, their filling factors, and the mor-
phology (via L). However, it is still a function of the somewhat dubious value
εh, that was necessary to introduce at the beginning of the derivation, but,
unfortunately, didn’t disappear at the end. The following approaches exist to
deal with εh.

Maxwell Garnett (MG) Approach

It might be the most natural choice to regard one of the constituents (say, the
l-th one) as the host material, and the others as the inclusions. In the case of
Fig. 4.3, it clearly makes sense to regard silver as inclusion and the dielectric
as the host. That is the philosophy of the Maxwell Garnett approach. In this
case, we have:

(ε − εl)
εl + (ε − εl)L

=
∑
j �=l

pj
(εj − εl)

εl + (εj − εl)L
(4.17c)

Note that the sum of the filling factors on the right hand is now less than 1.
In application, one must keep in mind that (4.17c) depends on the choice of
the host function: It makes a great difference whether material 1 is embedded
in material 2 or vice versa.

Lorentz-Lorenz (LL) Approach

As in Sect. 3.2.2, the Lorentz–Lorenz approach assumes that all inclusions
polarize in vacuum (εh = 1). We therefore obtain:

(ε − 1)
1 + (ε − 1)L

=
∑

j

pj
(εj − 1)

1 + (εj − 1)L
(4.17d)

Effective Medium Approximation (EMA)
or Bruggeman Approach

Another possibility is to assume that the effective dielectric function itself
acts as the host medium for the inclusions. This leads to the following mixing
formula:

0 =
∑
j

pj
(εj − ε)

ε + (εj − ε)L
(4.17e)

There is no general recipe which of these approaches works best. As a rule,
the MG theory works best when the constituents clearly may be subdivided
into inclusions and one matrix material. On the contrary, in the presence of
percolation or in molecular mixtures, the application of the EMA may lead to
the best results. Finally, highly porous materials might be well fitted within
the LL approach.
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Fig. 4.8. Ultrathin multilayer structure, composed from amorphous silicon (a-Si,
dark) and an organic material (copperphthalocyanine CuPc). In contrast to the
previous images, this is a cross-sectional image. In average, each a-Si layer has a
thickness of approximately 3.5 nm, and each CuPc layer a thickness of about 2 nm.
In the VIS, the thickness values are much smaller than the wavelength, so that for
in-plane polarization of the electromagnetic wave, (4.11) may find application

Before comparing our newly derived equations with the experimental com-
posite data, let us make a final comment on (4.11). In which cases it makes
sense to apply (4.11)?

Let us assume a pancake structure with an electrical field perpendicular
to the cavity axis. From Table 3.1 we find, that L = 0. Equation (4.17a)
immediately becomes:

ε =
∑

j

pjεj

which is identical to (4.11). Due to L = 0, the system may be regarded as a
layered structure, while the electric field vector is parallel to the planes. On
the other hand, the quasistatic approximation still holds, so that the layer
thickness must be much smaller than the wavelength (see Fig. 4.8). In this
case, the system behaves like a couple of capacitors in parallel combination.
Those capacitances add up to the full capacitance, and (4.11) is a natural
conclusion from there.

On the other hand, when the electric field vector is normal to the planes,
the same argumentation would lead to the statement that the capacitors are
now combined in series. In this case, one would expect:
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ε−1 =
∑

j

pjε
−1
j

In fact, in order to deal with this situation, we have now to assume L = 1
and to use (4.17e). From that, the given equation will be easily obtained.

4.5.3 Extended Detail: Remarks on Surface Plasmons

Let us now return to our practical problem. We have derived a couple of
equations that could be helpful to reproduce the experimentally observed
dispersion. Figure 4.9 shows the effective dielectric functions obtained for
our case by (4.17c)–(4.17e) assuming L = 1/3 (spherical inclusions).

It turns out, that the different models give quite different results concern-
ing the effective dielectric function. In any case, we succeeded to qualitatively
reproduce the experimentally observed behaviour of the dielectric function
from Fig. 4.5: At least in the MG and LL models, we get a distinct absorption
line that has some similarity with the behaviour we wanted to reproduce. So
that these models seem to be applicable in real life.

But what is the reason for the absorption line? As already mentioned, in
small metal islands, the motion of the previously “free” electrons is confined
inside the particle, so that the electrons behave optically in a similar man-
ner like bound electrons. These electrons may perform collective oscillations
(plasma oscillations). Clearly, the electrons are inert and suffer a restoring
force, hence their oscillation causes a resonant absorption behaviour. This is
the physical reason of the observed absorption line.

Fig. 4.9. Dielectric functions as obtained from different mixing models; L = 1/3
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Fig. 4.10. Experimental data and calculation by the Maxwell Garnett approach
with an assumed depolarisation factor of 0.21 (elongated particles)

In the language of quantum physics, the collective motion of electrons is
identical to a superposition of elementary oscillations called plasmons. The
term “surface plasmon” originates from the fact, that in a small metal particle
a net charge appears only at its surface – inside the particle the charges of the
electrons are compensated by the positive charges of the cores in the same
manner as it would happen in the bulk metal. The surface charges may form
a dipole moment of the particle, that may effectively couple to the impinging
light, so that such surface plasmons are easily excited through absorption of
electromagnetic radiation.

It is not the purpose of this chapter to go into full detail here. We only
mention, that the resonant behaviour mathematically originates from vanish-
ingly small denominators such like those in (4.17c). For a small metal particle
in a dielectric host, a resonance therefore occurs, when

|εh(ω) + [εmetal(ω) − εh(ω)] L| → min (4.18)

is fulfilled. As the real part of the metal dielectric function is usually negative,
there will exist one or more frequencies where condition (4.18) is fulfilled. A
further analysis of this condition shows, that the resonance frequency depends
on the particle shape (via L) and the value of the dielectric function of the
embedding medium. As a thumb rule, one may assume that an increase in the
host dielectric function decreases the surface plasmon resonance frequency,
while an increase in L increases the resonance frequency.

Let us finally directly compare the result obtained from the Maxwell Gar-
nett model with the experimental data. As expected, the MG data lead to
the best results here, because we really deal with isolated inclusions in the
matrix. Nevertheless, the agreement between the theory from Fig. 4.9 and
experiment is still only qualitative, due to the mismatch between the reso-
nance frequencies. This is partially caused by the assumed spherical geometry
(L = 1/3). The problem may be overcome by choosing another depolarisa-
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Fig. 4.11. Optical appearance of silver island films in lanthanum fluoride (upper
part) and transmission electron micrographs of the samples

tion factor of L = 0.21, corresponding to moderately elongated particles. The
result is shown in Fig. 4.10.

The agreement between experiment and theory has now improved. Clearly,
as seen from Fig. 4.3, the assumption about spherical inclusions was very
rough. Most of the silver material is concentrated in elongated clusters, so
that resonances with L < 1/3 significantly contribute to the response of the
system. In practice, they cause a red-shift of the absorption line. Moreover,
the particles are statistically distributed with respect to shape and orienta-
tion. That leads to an inhomogeneous broadening of the line. For that reason,
the experimentally obtained resonance is broader than that predicted by the
simple MG-calculation. Of course, there exist more sophisticated approaches
that generalize (4.17a) to a statistical superposition of particles with dif-
ferent depolarisation factors. That will clearly result in a better agreement
between theory and experiment. We will not go into these details, but will
state here that the general features of the dielectric function of mixtures may
be reproduced basing on the equations derived so far. More powerful algo-
rithms to calculate the response of such composite systems are provided by
the Bergman theory, the Mie-theory and its modern generalizations to spher-
ical cluster assemblies, and the Rigorous Coupled Wave Approach (RCWA).
The interested reader is here referred to the special literature.

Finally, let us demonstrate the optical appearance of silver island films
at a concrete example. Figure 4.11 (upper part) shows the colour of silver
islands embedded in lanthanum fluoride. Below, for each sample, a trans-
mission electron micrograph is presented, corresponding to a sample area of
170 nm × 170 nm. The silver islands are seen as dark spots. It is clearly seen,
that the different colour of the samples correspond to quite different silver is-
land geometries, as they are characteristic for each of the individual samples.
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4.5.4 Extended Detail: The Effect of Pores

As the last example in this chapter, we turn to another problem that is of
practical significance for thin film optical materials. Although we did not
yet deal with optical films, it should be intuitively clear that the optical
response of optical films is determined by both material properties and their
geometry. As most optical films are grown today ‘from bottom to top’ in
vacuum conditions with a considerably high growth rate, it is clear that they
may contain plenty of defects, among them pores. These pores may be empty
or filled with water, and in any case they will affect the optical constants of
the film material.

To consider the effects of pores in our theory, the simplest possibility is to
regard the film material as a mixture of the ‘pure material’ (with a refractive
index n0) and the pores. The problem then appears as a particular case of
the theory developed in Sect. 4.5.2, and is traditionally solved by means of
(4.17c). For convenience, we will assume that the indices of refraction are
purely real, but this does not affect the generality of the model.

That still gives a lot of possibilities to consider different types of morphol-
ogy as well as different optical constants of the ‘pore material’ (empty pores or
water). The remaining task is to derive an explicit expression for the optical
constants of the film material. That may easily be done by the reader himself,
and we restrict ourselves to one practically important particular case, namely
the case of free standing cylindrical rods. This is a model system that is often
applied to films with a columnar structure, as they may be grown by evapora-
tion techniques. For the sake of illustration, Fig. 4.12 shows an electron micro-
graph of a magnesium fluoride film that exhibits such a columnar structure.

Fig. 4.12. Columnar structure of a magnesium fluoride film. Courtesy of Norbert
Kaiser
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The filling factor of the solid fraction p (filling factor of the rods) is of-
ten called the packing density of the film. For normal incidence, the electric
field vector is perpendicular to the rods. According to our classification from
Chap. 3, these rods should correspond to the previously discussed needles.
Therefore, as seen from Table 3.1, the corresponding depolarisation factor
must be close to 0.5. Assuming that the rods are embedded in air or vacuum
with a refractive index of 1, (4.17c) (which is in this particular case identical
with (4.17d)) will yield:

n2 =
2 +

(
n2

0 − 1
)
(1 + p)

2 + (n2
0 − 1) (1 − p)

(4.19a)

In the more general case of filled pores, (4.19a) becomes

n2 = n2
v

n2
v + [L(1 − p) + p]

(
n2

0 − n2
v

)
n2

v + L(1 − p) (n2
0 − n2

v)

∣∣∣∣∣
L= 1

2

= n2
v

2n2
v + (1 + p)

(
n2

0 − n2
v

)
2n2

v + (1 − p) (n2
0 − n2

v)
=

(1 − p)n4
v + (1 + p)n2

vn2
0

(1 + p)n2
v + (1 − p)n2

0

(4.19b)

where nv is the refractive index of the void material (usually water). Quite
fortunately, from Sect. 2.5 we already have some idea on the optical constants
of water. With a refractive index of 1.33 in the VIS, it still has a lower
refractive index than the optical materials that are typically in use today.
Equation (4.19b) is known as the mixing formula of Bragg and Pippard.

Let us look at these equation in some more detail. Obviously, for a vanish-
ing packing density, the refractive index approaches that of the void fraction.
If the packing density is equal to 1, the film’s refractive index becomes equal
to that of the pure film material. For intermediate packing densities we will
find indices that are in between nv and n0. On the other hand, the mass
density ρ of the film is:

ρ = pρ0 + (1 − p)ρv (4.20)

Therefore, (4.17c–e) and (4.20) define characteristic relationships between the
mass density and the refractive index, which are experimentally accessible and
may, in principle, be used to decide which of the possible mixing models best
describes the given film material. Particularly, for empty pores and negligible
absorption, one will obtain that the refractive index generally increases with
increasing mass density. This seems to be quite understandable, because the
response of the system is expected to become stronger when more oscillators
are available, which is consistent with a higher mass density.

In fact, one could finish the chapter with this fine result. The only problem
is, that our approach does often work, but unfortunately not always.

We have already mentioned, that thin solid films are often produced by
evaporation in vacuum conditions. This is a common method, but there exist
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other techniques such as for example the sputtering techniques, which gen-
erally yield films with other properties than the evaporated ones. In these
films, the pores may be much smaller. For example, in sputtered amorphous
silicon and germanium films, pores have been found with diameters of about
0.7 nm, and the film’s refractive index has been found to be essentially higher
than that of completely dense (crystalline) films. How can we explain this
behaviour?

In this connection, we come to the generally important question of the size
of the inclusions assumed in the mixing models. In our models described so
far, the size does not play any role, as long as the inclusions are much smaller
than the wavelength of the light. If they become too large, the medium can
no longer be regarded as optically homogeneous, which will result in light
scattering that causes a turbid appearance of the material. In this case, our
theory will clearly be at stake. However, we are now confronted with the new
fact that the inclusions should not be too small. For very small inclusions,
our theory may give misleading results as well.

The new thing we find here is called a size effect. When the size of the
inclusions comes into play, equations (4.17) are no more valid. We speak on
extrinsic size effects when the size of the inclusions becomes too large com-
pared to the wavelength of the light. These extrinsic size effects are of purely
classical nature and may be calculated in terms of Mie’s famous theory. On
the contrary, when the inclusions are too small, it is no longer correct to
describe them in terms of the conventional dielectric function. The dielectric
function itself is a macroscopic measure accurately defined for a thermody-
namically relevant number of bulk oscillators. If the inclusion consists only
of a few atoms, its dielectric behaviour will deviate from the bulk one – for
classical reasons as well as for quantum mechanical ones. The size effects that
arise on this basis are called intrinsic size effects.

In terms of classical physics, intrinsic size effects occur when the number
of surface atoms of the inclusion cannot be neglected with regard to the bulk
atoms. Clearly, the smaller the inclusion (or the pore), the higher is the ratio
between surface and bulk oscillators. As the behaviour of surface atoms is
usually different from that of the bulk, we obtain an optical behaviour that
depends on the size of the inclusions.

In application to very small void, the simple Lorentz–Lorenz equation
(3.25) is sufficient to show that the void fraction may increase the refractive
index of the mixture. Let us see how this may happen:

We start from a dense packed solid and create pores by removing a number
of Nb atoms per unit volume. At the same time, we automatically create Ns

surface states (for example dangling bonds), each with a polarizability βs.
The dense solid had a refractive index according to:

n2
0 = 1 +

N0β

1 − N0β

3
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After removing the atoms, we have two types of oscillators, and the new
refractive index may be written as:

n2 = 1 +
(N0 − Nb) β + Nsβs

1 − (N0 − Nb) β + Nsβs

3

It is obvious that the removal of atoms leads to a decrease of the refractive
index, when

Nbβ > Nsβs ⇔ Nb

Ns
>

βs

β

is fulfilled. On the other hand, Nb scales with the third power of the char-
acteristic pore size l3 (the volume), while Ns scales with l2 (the surface).
Therefore, for a refractive index increase with increasing density, we get the
condition

l ∝ Nb

Ns
>

βs

β

So that the pores must not be too small. On the contrary, when the pores
are smaller than the limit defined by the upper condition, the appearance
of pores is expected to lead to an increase of the refractive index. Let us
estimate the characteristic ‘critical’ pore radius where the derivative of the
refractive index with respect to density changes its sign.

In order to get such an estimation, we have to make a few model assump-
tions. Let us assume, that the pores are spherical with the same radius R.
That leads to:

Nb =
4π

3
Np

R3

a3 ; Ns = 4πNp
R2

a2

With Np – pore concentration and a – the interatomic spacing. When the
polarizabilities are nearly equal (β ≈ βs), we get immediately:

R > 3a

When the interatomic spacing is approximately 0.2 nm, we should have at
least a pore diameter of 1.2 nm to get a decrease in the refractive index due
to the pores. This is consistent with the experimental findings mentioned
above.

These considerations show, that the refractive index is not necessary an
unambiguous function of the mass density. It really depends on the specifics
of the pores whether or not the simple mixing formulae like (4.17) may find
application. The general conclusion is, that for applying equations (4.17), the
pore size l should be of an order so that the following condition is fulfilled:

1nm < l � λ

n
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Of course, one may deal with intrinsic size effects by replacing the conven-
tional dielectric function of the inclusion by a size-dependent ad-hoc dielectric
function, but this does not change the principal conclusion of this chapter.

One last remark concerning the discussed subnanometer voids. Their ef-
fect is not to cause a small correction to the bulk refractive index. Instead,
they may change the picture completely. Thus, crystalline silicon has a re-
fractive index of nearly 3.45 in the NIR. Amorphous sputtered silicon films
have been found to show refractive indices up to 4.2 in the same spectral
region.



5 The Kramers–Kronig Relations

5.1 Derivation of the Kramers–Kronig Relations

This is the last chapter of the first part of this book, which deals with the
classical theory of linear optical constants. The purpose of this chapter is to
highlight some general analytical properties of the dielectric function, as they
follow from the fundamental physical principle of causality.

Let us start with the case of dielectrics. From Sect. 2.5 we now, that their
linear dielectric susceptibility may be written as:

χ(ω) =

∞∫
0

κ(ξ) eiωξ dξ =

∞∫
−∞

κ̃(ξ) eiωξ dξ =

∞∫
−∞

κ̃(ξ)θ(ξ) eiωξ dξ

These identities directly follow from the principle of causality, which makes
the response function invariant with respect to the multiplication with the
step function θ(t). Let us now execute a Fourier transform according to:

κ̃(ξ) =
1
2π

∞∫
−∞

χ(ω) e−iωξ dω

θ(ξ) =
1
2π

∞∫
−∞

Θ(ω) e−iωξ dω

That leads us to:

χ(ω) =
1

(2π)2

∞∫
−∞

eiωξ dξ

∞∫
−∞

Θ(ω1) eiω1ξ dω1

∞∫
−∞

χ(ω2) eiω2ξ dω2

=
1

(2π)2

∞∫
−∞

∞∫
−∞

Θ(ω1) χ(ω2) dω1 dω2

∞∫
−∞

ei(ω−ω1−ω2)ξ dξ

=
1
2π

∞∫
−∞

∞∫
−∞

Θ(ω1) χ(ω2) δ(ω − ω1 − ω2) dω1 dω2



62 5 The Kramers–Kronig Relations

=
1
2π

∞∫
−∞

Θ(ω − ω2) χ(ω2) dω2 = χ(ω)

where the identity:

+∞∫
−∞

ei(ω−ω1−ω2)ξ dξ = 2πδ(ω − ω1 − ω2)

has been used with δ(x) – Dirac’s delta-function. The Fourier-spectrum of
the step function may be calculated according to:

Θ(ω) =

∞∫
−∞

θ(ξ) eiωξ dξ =

∞∫
0

eiωξ dξ = lim
T→∞

∞∫
0

e− ξ
T eiωξ dξ

= − lim
T→∞

1
(− 1

T +iω)
= lim

T→∞
1

−iω+ 1
T

= lim
T→∞

T−1

T−2+ω2 + lim
T→∞

iω
T−2+ω2

= πδ(ω) +
i
ω

so that one obtains:

Θ(ω − ω2) = πδ(ω − ω2) +
i

ω − ω2
→

χ(ω) =
1
2π

V P

∞∫
−∞

[
πδ(ω − ω2) +

i
ω − ω2

]
χ(ω2) dω2

We thus come to the relationship:

χ(ω) =
i
π

V P

∞∫
−∞

χ(ω2)
ω − ω2

dω2

where ‘V P ’ denotes Cauchy’s principal value of the integral. Separating the
real (χ′) and imaginary (χ′′) parts, we obtain the result:

χ′(ω) = − 1
π

V P

∞∫
−∞

χ′′(ω2) dω2

ω − ω2
=

1
π

V P

∞∫
−∞

χ′′(ω2) dω2

ω2 − ω

χ′′(ω) =
1
π

V P

∞∫
−∞

χ′(ω2) dω2

ω − ω2
= − 1

π
V P

∞∫
−∞

χ′(ω2) dω2

ω2 − ω

In application to the real and imaginary parts of the dielectric function (ε′

and ε′′) we finally get the Kramers–Kronig Relations:
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ε′ = 1 +
1
π

V P

∞∫
−∞

ε′′(ω2) dω2

ω2 − ω
(5.1)

ε′′ = − 1
π

V P

∞∫
−∞

[
ε′(ω2) − 1

]
dω2

ω2 − ω
(5.2)

The important conclusion is, that as a consequence of causality, the dispersion
of the real and imaginary parts of the dielectric function are interconnected
to each other via the integral transformations (5.1) and (5.2).

In the present form, these equations are valid only for dielectrics. The
reason is clear: The integration interval involves the argument ω2 = 0, but as
we have mentioned in Sect. 3.1.2, (2.25) cannot be used to describe the low-
frequency behaviour of conductors. Instead, the approach (2.25) with respect
to (3.13) has to be replaced by an approach like (3.15). That gives us the
possibility to generalize equations (5.1) and (5.2) to the case of conductors.
Indeed, the series (3.15) may be rewritten as:

χconductor(ω) ≡ i
σstat

ε0ω
+ χopt(ω)

Of course, χopt behaves ‘regular’ with respect to an expansion into a power
series like (3.13). Therefore, for χopt, the Kramers–Kronig relations hold:

χ′opt(ω) =
1
π

V P

∞∫
−∞

χ′′opt(ω2) dω2

ω2 − ω

χ′′opt(ω) = − 1
π

V P

∞∫
−∞

χ′opt(ω2) dω2

ω2 − ω

Because the first term in (3.15) is purely imaginary, we have

χ′(ω) = χ′opt(ω)

So that, for a conductor, we find:

χ′′(ω) = χ′′opt(ω) +
σstat

ε0ω
→

(5.3)

χ′′(ω) = − 1
π

V P

∞∫
−∞

χ′(ω2) dω2

ω2 − ω
+

σstat

ε0ω

and
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χ′(ω) =
1
π

V P

∞∫
−∞

χ′′opt(ω2) dω2

ω2 − ω
=

=
1
π

V P

∞∫
−∞

χ′′(ω2) dω2

ω2 − ω
− σstat

πε0
V P

∞∫
−∞

dω2

ω2(ω2 − ω)︸ ︷︷ ︸
=0

(5.4)

→ χ′(ω) =
1
π

V P

∞∫
−∞

χ′′(ω2) dω2

ω2 − ω

In (5.1)–(5.4), the susceptibility or the dielectric functions have to be defined
for positive and negative frequencies. That does not cause any problems.
According to (3.13) and (3.15), the imaginary part of the dielectric function
has to be regarded as an odd function of the frequency, while the real part is
an even one (For that deeper reason, the Sellmeier- and Cauchy – formulae
in Sect. 4.4 contain only even powers of the wavelength or the wavenumber).
Consequently, (5.3) and (5.4) may be rewritten in the more familiar form:

ε′(ω) = 1 +
2
π

V P

∞∫
0

ε′′(ω2)ω2 dω2

ω2
2 − ω2 (5.5)

ε′′(ω) = −2ω

π
V P

∞∫
0

[
ε′(ω2) − 1

]
ω2

2 − ω2 dω2 +
σstat

ε0ω
(5.6)

5.2 Some Conclusions

Let us use this short section to present some useful relationships that imme-
diately follow from equations (5.5) and (5.6). We start with the derivation of
a simple dispersion formula (Wemple’s dispersion formula), which is obtained
for the refractive index dispersion in a frequency region well below the region
of absorption. We postulate, that absorption (a non-zero imaginary part of
the dielectric function) is restricted to a frequency range [ωA, ωB ]. According
to the mean-value-theorem, we have

ε′(ω) = n2(ω) = 1 +
2
π

V P

∞∫
0

ε′′(ω2) ω2 dω2

ω2
2 − ω2 = 1 +

2
π

ωB∫
ωA

ε′′(ω2) ω2 dω2

ω2
2 − ω2 =

= 1 + (ωB − ωA)
ε′′(ω̄) ω̄

ω̄2 − ω2 ≡ 1 +
const. × ω̄

ω̄2 − ω2 = n2(ω)

with ω̄ ∈ [ωA, ωB ]; ω � ωA < ωB ; ε′′(ω) = 0.
By structure, this dispersion formula is similar to the Sellmeier formula,

obtained for one single oscillator. In fact, in our derivation, the full absorption
structure has been replaced by a single oscillator centred at ω.
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Another conclusion concerns the static dielectric constant for non-con-
ductive materials. From (5.5), we get for ω = 0:

εstat = 1 +
2
π

∞∫
0

ε′′(ω2)
ω2

dω2 (5.7)

So we see that the value of the static dielectric constant is directly connected
to the high-frequency behaviour of Imε. In dielectrics, it will be always larger
than one. On the other hand, for very high frequencies, we find from (5.5):

ε′(ω) |ω→∞ = 1 − 2
πω2

∞∫
0

ε′′(ω2) ω2 dω2 (5.8)

This approach is valid when the frequency is far above the frequency
regions where absorption occurs (it does not work for Debye’s equations, be-
cause of the slow descent of the imaginary part with increasing frequency).
We see, that for very high frequencies, we still have to expect normal dis-
persion, but the refractive index is below the value one! This is a typical
situation in the X-ray region.

From here, we may conclude that the real part of the dielectric function
must show anomalous dispersion in the vicinity of absorption structures,
no matter whether or not the oscillator model is applicable. Indeed, in the
static case it is larger than the value one (5.7). As far as we have no ab-
sorption, it further increases with frequency according to Wemple’s formula.
When the frequency is well above the absorption structures, we find again
normal dispersion, but the refractive index is below 1. Consequently, in the
neighbourhood of absorption structures, the refractive index must decrease
with frequency (as far as it is regarded to be a continuous function of the
frequency).

Let us finally come to an important sum rule. In terms of a multioscil-
lator model with M degrees of freedom, at sufficiently high frequencies the
dielectric function of a material may be approximated by:

ε(ω) = 1 − Nfree

ε0

q2

m

1
ω2 + 2iγω

+
M∑

j=1

Njq
2

ε0m
ω̃2

0j − ω2 − 2iωγj
(5.9)

where Nj is the concentration of bound electrons that belong to the j-th
degree of freedom. In the asymptotic case, we get

ε(ω) |ω→∞ ≈ 1 − q2

ε0m

⎛
⎝Nfree +

M∑
j=1

Nj

⎞
⎠× 1

ω2 = 1 − q2

ε0mω2 N (5.10)

where N is the full electron concentration. Comparing (5.8) and (5.10) leads
us to the sum rule:



66 5 The Kramers–Kronig Relations

N =
2ε0m

πq2

∞∫
0

ε′′(ω2) ω2 dω2 (5.11)

Hence, the integral absorption is connected to the concentration of dipoles
that cause the absorption. Rewriting (5.11) in terms of the optical constants,
one immediately obtains:

N =
2ε0mc

πq2

∞∫
0

n(ω) α(ω) dω (5.12)

Equation (5.12) is in the fundament of any quantitative spectroscopic anal-
ysis, where the integral absorption is measured in order to determine the
concentration of any kind of absorption centres (molecules, impurities, and
so on). Of course, in any practical application, one will always use a finite
frequency interval where the integration in (5.12) is performed.

5.3 Resume from Chapters 2–5

5.3.1 Overview on Main Results

As mentioned in the introduction, the Chap. 2–5 together form the first part
of this book and deal with the classical theory of linear optical constants. Let
us shortly recall the main results we have obtained so far:

– For homogeneous, isotropic, and nonmagnetic materials, the linear optical
constants (refractive index, absorption coefficient) are determined by the
complex dielectric function of the material.

– As a result of causality, the dielectric function and the optical constants
depend on the frequency (dispersion). The dispersion of the real and imag-
inary parts of the dielectric function are related to each other by integral
transformations called the Kramers–Kronig relations.

– The dielectric functions of systems of permanent dipoles as well as of
induced dipoles created by the oscillation of free and bound charge car-
riers have been explicitely derived. The results are expressed in terms of
Debye’s equations as well as the Drude- and Lorentz-formulae.

– In an assembly of oscillators, the width of the absorption line usually
differs from that predicted by the model of a microscopic oscillator. This
is caused by homogeneous and inhomogeneous line broadening effects.

– The optical constants of material mixtures depend on the mixing ratio
as well as on the microstructure. Different optical mixing models have
been derived, including the classical Maxwell Garnett theory, the Lorentz–
Lorenz theory, and the effective medium approximation. On this basis, the
optical behaviour of metal-dielectric-composites and of porous solids could
be discussed. For materials with a columnar microstructure, the mixing
model of Bragg and Pippard has been derived.
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– The relation between microstructure and optical constants could be ex-
emplified. Thus, the optical constants depend on the shape of possible
inclusions. In simple cases, unambiguous relations between the refractive
index and the mass density of a material may exist.

5.3.2 Problems

1. In (2.23), find out the angular frequency where Imε reaches its maximum
value. What is the value of Reε at this frequency?
Answer: ω = τ−1; Reε = 1 + χstat/2.

2. From n̂ =
√

ε, find explicit expressions for the real and imaginary parts
of the complex index of refraction as a function of Reε and Imε.
Answer:

n=
1√
2

√√
(Reε)2+(Imε)2+Reε; K =

1√
2

√√
(Reε)2+(Imε)2− Reε

3. Find a general expression for the polarizability of a small sphere with the
radius R embedded in vacuum in the quasistatic limit.

Answer: β(ω) = 4πR3 ε(ω) − 1
ε(ω) + 2

4. Basing on the result of the third problem, assume a metallic sphere with
a dielectric function given by the Drude function. Derive an explicit ex-
pression for β(ω).

Answer: β(ω) =
4π

3
R3 ω2

p

ω2
p

3
− ω2 − 2iωγ

; a resonance occurs at ω =
ωp√

3

5. Repeat problems 3 and 4 assuming an ellipsoid with the volume V , L
being the relevant depolarisation factor

Answer: β(ω) = V
ε(ω) − 1

1 + [ε(ω) − 1] L

Drude-metal: β(ω) = V
ω2

p

Lω2
p − ω2 − 2iωγ

; resonance at ω = ωp

√
L

6. Calculate the so-called dielectric loss function for a Drude metal and for
the oscillator model: The loss function is defined as −Im(1/ε).

Answer: −Im
1
ε

=
2ωγω2

p(
ω̃2

0 + ω2
p − ω2

)2 + 4ω2γ2

A resonance appears at ω ≈
√

ω̃2
0 + ω2

p. The resonance of the loss function
is thus always blue-shifted with respect to that of the dielectric function.
In metals, ω̃2

0 = 0, and therefore the resonance of the loss function is ex-
pected at the plasma frequency. The loss function will become important
later in Chap. 6 when we discuss the reflectivity of metal surfaces.
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7. Estimate the classical plasma frequency for different noble metals. From
that, estimate the different resonance frequencies (and wavelength) de-
rived in the problems 4–6.

8. In order to account for the effects of bound electrons in a metal, in clas-
sical physics, a merger of the Drude and the oscillator models may be
applied, according to (3.1). Try to find out the effect of the bound elec-
tron resonances on the dielectric loss function, assuming that the bound
oscillator resonance frequency is below the plasma frequency of the free
electrons.
Answers to 7 and 8 will be given in Chap. 6.

9. Check the Kramers–Kronig consistency of the real and imaginary parts
of the dielectric functions given by Debye’s model, the Drude formula,
and the oscillator model.

10. Assume a porous columnar material with a packing density of 97%. At
room temperature, the pores are assumed to be filled with water (nv =
1.33). The room temperature refractive index of the porous material has
been measured to be 2.10. Estimate the refractive index of the material
at 100◦C, when the pores are expected to be empty.
Answer: n = 2.07

11. Make sure that the expression (5.12) yields the correct dimensionality of
a particle concentration (m−3)!



Part II

Interface Reflection and Interference
Phenomena in Thin Film Systems



6 Planar Interfaces

6.1 Transmission, Reflection, Absorption,
and Scattering

6.1.1 Definitions

The previous Chaps. 2–5 discussed the classical treatment of linear optical
constants, necessary for the calculation of any kind of optical spectrum. The
Chaps. 6–9 form the second part of this book, and their main purpose is to
deal with the calculation of the optical spectra of thin films and film stacks.

In terms of the philosophy claimed in Chap. 2, the calculation of any
spectrum consists of two subtasks. The first one is to elaborate a theory for
the wavelength behaviour of the optical material constants. This is what we
have done in the first part of this book while restricting ourselves to classical
models and linear optics. The second subtask is to calculate the propagation
of electromagnetic waves in the given materials while considering the specific
geometry of the system under investigation. We will not deal here with a
general theory, but again restrict our attention to a particular case, namely
on thin film spectra. Again, this will be a purely classical treatment. So that
the material provided in the Chaps. 2–9 in sum shall enable the reader to
calculate the linear optical properties of arbitrary thin film systems in terms
of classical electrodynamics.

Let us start with some useful definitions. We regard a system as exempli-
fied in Fig. 6.1.

Figure 6.1 shows an object (the sample) that is irradiated with light under
a given angle of incidence. First of all, the incoming light has to penetrate
the surface of the object to come into interaction with the material contained
in the bulk of the sample. It is therefore clear that the optical properties of
surfaces and interfaces will be of utmost importance for the optical behaviour
of the whole system. It will be the subject of Sect. 6.2 to discuss this essential
point. After interaction with the sample, light may leave the sample in several
directions. From the phenomenological point of view, the light may either be

– transmitted through the sample (in a well-defined direction), or
– specularly reflected from the sample, or
– diffusely scattered at the sample surfaces or in its volume, or
– absorbed at the sample surfaces or in its volume.
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Fig. 6.1. To the definitions of T , R, and S. ϕ is the incidence angle

Let us for simplicity focus on the intensities of the signals. It is a com-
mon practice to define the transmittance T of the sample as the ratio of the
intensity of the transmitted light IT and that of the incoming light IE :

T ≡ IT

IE

Accordingly, we define the specular reflectance R as the ratio of the specularly
reflected intensity IR and the incoming one:

R ≡ IR

IE

If we deal with a sample that does neither diffusely scatter nor absorb the
irradiation, then the thus defined transmittance and reflectance must sum up
to the value one – simply as a result of the energy conservation law. In prac-
tice, a certain fraction of the light intensity is diffusely scattered. That leads
us to the definition of the optical scatter S as the ratio of the intensities of
the light participating in scattering processes IS and the incoming intensity:

S ≡ IS

IE

Analogously, we define the absorptance A as the ratio of the absorbed inten-
sity IA and the incoming one:

A ≡ IA

IE

In the presence of absorption and scatter, the energy conservation law may
be written as:
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Fig. 6.2. Principal scheme of a double beam dispersive spectrophotometer; (LS)
light source, (MC) monochromator, (CH) chopper, (SC) sample compartment, (D)
detector, (A) amplifier

T + R + A + S = 1 (6.1)

So that these four quantities are not independent from each other, and accu-
rate knowledge of three of them allows the fourth to be immediately calcu-
lated. Nevertheless all four quantities T , R, S, and A may, in principal, be
measured independently from each other. The algebraic sum of absorption
and scatter is often called optical loss L:

L ≡ S + A = 1 − T − R (6.2)

The values T , R, S, and A are characteristic for a sample in specific experi-
mental conditions. That means, that both sample material and its geometry
(including the experiment geometry) are responsible for the signal. Of course,
all these values are additionally dependent on the wavelength of the light. But
their wavelength dependence does not necessarily resemble that of the optical
constants in a simple manner (especially in thin film samples).

6.1.2 Experimental Aspects

Concerning the measurements of T , R, A, and S, the transmittance is most
simply to be measured. Today, transmission spectrophotometers belong to
the commercially available standard equipment in many university and in-
dustrial labs. Typical spectrophotometers are either designed for the UV/VIS
region (λ > 185 nm; so-called UV/VIS-spectrometers, which often work with
spectrally dispersive monochromators as shown schematically in Fig. 6.2) or
for the MIR (so-called IR-spectrometers). IR spectrometers are produced to-
day to an increasing extent as Fourier-Transform-spectrometers. This has led
to the abbreviation FTIR (Fourier-Transform-Infrared). Compared to disper-
sive spectrophotometers, they allow a much faster spectra registration.
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The NIR region is usually accessible in so-called UV/VIS/NIR - dispersive
spectrometers, or as an optional upgrading of FTIR spectrometers. The latter
type of spectrometer also allows to be upgraded for FIR-measurements.

In its standard version, a transmission spectrometer performs measure-
ments of the transmittance with an accuracy of approximately 0.002 to 0.01,
depending on the quality of the spectrometer and the wavelength range. Usu-
ally, a suitable specular reflectance attachment is optionally available, so that
T and R may be measured.

Clearly, in any real situation, from the knowledge of two data (T and R)
only the full optical loss may be determined utilizing (6.1). A discrimination
between absorption and scatter losses is then impossible without additional
model assumptions on the nature of the sample and their realization in refined
mathematical spectra fitting procedures. An indication of surface scatter at
the first sample surface may be drawn from the specular reflectance: If the
first surface is rough, the specular reflectance gradually decreases down to
zero with increasing frequency.

Another principal problem occurs in connection with the measurement
of small loss values. As T and R are measured with a finite accuracy, the
measurement of small losses (typically below 0.01) becomes impossible by
this method. This is simply a consequence of the high underground signal,
provided by the transmittance and the reflectance spectra. In such cases, one
should rather directly measure the optical loss, and not conclude on it from
T and R measurements.

Occasionally, corresponding attachments may also be combined with
the above-mentioned spectrophotometers. Backscattering losses (back into
medium 1) and forward scatter can be measured in so-called integrating
sphere attachments, where the diffusely scattered light is collected and
brought to the detector. These spheres are commercially provided for the
NIR/VIS/UV spectral regions (coated with BaSO4 or Spectralon) or for the
MIR (coated with infragold). From the viewpoint of their size, these spheres
reach from minispheres (a few centimeters in diameter) up to devices with
more than one meter in diameter.

The accurate measurement of absorption losses bases on the idea, that
the energy absorbed in the sample must either leave the sample (with a cer-
tain time delay) or enhance its temperature. In other words: The absorbed
energy portion will participate in relaxation processes, and this is our chance
to detect it. In order to detect very small absorption losses, absorption mea-
surements are often accomplished with high incident light intensities, reliably
supplied from laser sources.

It will depend on the nature of the sample and its environmental con-
ditions (for example temperature), which of the relaxation channels works
most rapidly. If radiative relaxation is fast enough, the fluorescence intensity
allows us to conclude on the previously absorbed energy, and thus to deter-
mine the absorptance. This is what is done by the fluorescence method. If
nonradiative relaxation is faster, then the absorbed energy will finally lead to
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sample heating. As the temperature increase may be conveniently measured,
the absorptance of the sample may be determined. Thus we have calorimetric
methods of absorptance measurements.

Other absorption measurement techniques make use of the sample heat-
ing without direct temperature measurements. Thus, the optoacustical mea-
surements detect the sound wave generated in a medium as a result of the
absorption of pulsed light due to thermal expansion. Further methods detect
the deformation of the sample surface, caused by thermal expansion due to
light absorption. This deformation may be optically detected by the angu-
lar deflection of a weak probe beam. The corresponding method is called
Photothermal Deflection Spectroscopy (PDS). Alternatively, the thermal ex-
pansion of the embedding medium surrounding the sample surface may be
detected through its refractive index change. If the probe beam is of grazing
incidence, the refractive index gradient in the vicinity of the heated surface
leads to an angular deflection of the probe beam, which may be detected
(Mirage-effect).

6.1.3 Remarks on the Absorbance Concept

There is a further concept describing optical sample properties that is espe-
cially popular in chemical physics – the so-called absorbance concept. The
absorbance may be directly obtained by means of a spectrophotometer like
shown in Fig. 6.2, placing the sample of interest into the sample beam, and
a suitable reference sample into the reference beam. Then, the spectropho-
tometer measures the ratio between the sample transmittance T and that of
the reference Tref . From that, the absorbance may be calculated according to
the definition:

absorbance ≡ − lg
T

Tref

It is immediately clear, that the thus defined absorbance is not an absolute
measure of the sample properties, but depends on the optical properties of
the (arbitrarily chosen) reference. That ambiguity is in clear contrast to the
properties of the absorptance as defined before, and makes it difficult to
apply the absorbance concept to quantitative analysis of the optical sample
properties. One may overcome the problem leaving the reference beam blank,
so that Tref = 1 for any wavelength. That leads to:

absorbance = − lg T = − lg(1 − A − S − R)

The thus defined absorbance is no further dependent on the properties of a
reference sample. On the other hand, any non-vanishing reflectance, scatter,
or absorption signal will give rise to a finite “absorbance” signal, so that, in
fact, the measurement of a finite absorbance needs not to be connected with
a physical absorption process. Hence, we will not use this absorbance concept
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here, because it is only a mathematical transformation of the transmittance to
a logarithmic scale and does not contain any new information. By the way, for
the same reason it is misleading to refer to a transmission spectrophotometer
as shown in Fig. 6.2 as an ‘absorption spectrometer’.

Before concluding this section, let us make final remark concerning a spe-
cific version of the absorbance concept. In application to the spectroscopy of
thin films, the supporter of the absorbance concept make use of the fact, that
a thin film system is usually deposited on a thick substrate, which supplies
the necessary mechanical support. It seems promising to define the thin film
absorbance through the ratio of the sample (film on substrate) transmittance
T and that of the uncoated substrate Tsub. This leads to:

absorbance ≡ − lg
T

Tsub

But this re-definition is not helpful, on the contrary, it causes further con-
fusion. Imagine an anti-reflection coating without absorption on a non-
absorbing substrate (we will describe such systems in the following chapters
in more detail). Such a sample has a higher transmittance than the bare
substrate. Consequently, we get a negative absorbance (whatever that should
mean), although there is no absorption at all – neither in the film nor in the
substrate!

So that the absorbance concept may be convenient in the spectroscopy
of liquids and gases in cells, but it should not be applied in solid state spec-
troscopy, and it lacks any use in thin film spectroscopy.

6.2 The Effect of Planar Interfaces: Fresnel’s Formulae

The calculation of the transmittance and the reflectance of a thin film system
belongs to the standard tasks in thin film spectroscopy. Impinging on a thin
film system, the electromagnetic wave first comes into contact with the thin
film surface. Therefore, the first step in understanding thin film spectra is
to understand what happens with the electromagnetic wave at surfaces and
interfaces.

That will lead us to a theoretical apparatus based on Fresnel’s formulae.
They are utmost important in thin film spectroscopy, and we will discuss
them in full detail. But before deriving these equations, it is worth to make
a remark concerning the history of these equations:

As it will be seen in the following, we will derive Fresnel’s equations from
Maxwell’s electromagnetic theory of light. Fresnel couldn’t make use of this
theory for the simple reason, that he lived before Maxwell was born (Augustin
Fresnel: 1788–1827; James Clerk Maxwell: 1831–1879). At his time, Fresnel
obtained these equations from the elastic theory of ether, assuming transver-
sal elastic waves impinging onto an interface. Of course, in our treatment we
will use Maxwell’s theoretical apparatus and imagine a plane electromagnetic
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Fig. 6.3. Derivation of Fresnel’s formulae

wave impinging on an interface with an angle of incidence ϕ. This situation
is scetched in Fig. 6.3.

As seen from the figure, we assume an absolutely flat and sharp interface.
Again, the media above and below the interface are regarded to be optically
homogeneous, isotropic, and nonmagnetic. The (possibly complex) refractive
index of the first medium is n̂1, and that of the second n̂2.

In the given geometry, it is natural to assume that there is one transmitted
wave in the second medium, while we expect two waves in the first medium:
the impinging wave and a reflected one. Let ψ be the angle between the in-
terface normal and the propagation direction of the transmitted beam (angle
of refraction). The incidence angle and the refractive angle are mutually con-
nected by Snell’s law of refraction, which is supposed to be known to the
reader. In electromagnetic theory, it may be derived as a direct consequence
of the requirement that the horizontal components of the wave vectors above
and below the interface are identical. The latter requirement is a straightfor-
ward conclusion from Maxwell’s boundary conditions for the parallel (to the
interface) components of the electric field. Because the wave vectors may be
complex, Snell’s law may be formally written in the following way:

sin ϕ

sin ψ
=

n̂2

n̂1
(6.3)

For the same continuity reasons, the reflected wave forms the same angle with
the interface normal as the impinging one.

It may happen that (6.3) yields a complex angle of refraction. That does
not cause any problems. Indeed, let us assume the case of a thin film system.
In this case, all interfaces are parallel to each other. Clearly, some of the
interfaces may separate materials from each other that have complex indices
of refraction, so that Snell’s law forces us to work with complex angles of
refraction. Their physical sense is quite simple. Let us assume, that the very
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first (incident) medium is free of damping. Then, the refractive index is purely
real, and of course the incidence angle is real as well. So the product n1 sin ϕ
is real. Due to Snell’s law, n2 sin ψ is then also real, even when the second
medium has a complex index of refraction. Applying (6.3) subsequently to all
interfaces, we will find that this conclusion is true for all media. On the other
hand, the product of the refractive index and the sinus of the propagation
angle is proportional to the tangential component of the wavevector. That
component must remain real, because it was real in the incident medium
and must be continuous. Consequently, when the refractive index becomes
complex, the refractive angle must become complex as well.

On the other hand, the product n2 cos ψ becomes complex when n2 is
complex. That means, that the normal (to the surface) component of the
wavevector is complex. This is again a familiar result, because such a complex
normal component of the wavevector is necessary to describe damping of the
light intensity inside the film.

In summary, the complex refractive angles as introduced by (6.3) are
a very convenient construction. In terms of the geometry as described in
Fig. 6.3, they describe damping of the light intensity along the z-axis, while
along the x-axis, the intensity doesn’t change.

For oblique incidence of the impinging wave, we now define the plane of
incidence as the plane containing the surface normal and the wave vector
of the impinging light. In the geometry of Fig. 6.3, the plane of incidence is
identical to the x–z-plane. The y-axis is directed in a manner that the x-, y-,
and z-axes form a right handed Cartesian coordinate system. The interface
between the media is thus identical with the x–y-plane.

The purpose of the following treatment is to derive equations that allow
to calculate the transmittance and reflectance of a plane wave impinging on
the given interface, supposed that the angle of incidence is known as well as
the refractive indices of the materials and the polarization state of the wave.
We start from Maxwells boundary conditions for the E- and H-fields at the
plane interface. In the first medium, the full field strength appears as the
sum of the fields of the impinging and reflected waves, while in the second
medium, we only have one transmitted wave. As the tangential (to the inter-
face) components of the E- and H-fields must be continuous, we may write:

E(e)
x + E(r)

x = E(t)
x

(6.4)
E(e)

y + E(r)
y = E(t)

y

H(e)
x + H(r)

x = H(t)
x

(6.5)
H(e)

y + H(r)
y = H(t)

y

where (e), (r), and (t) mark the incident, reflected, and transmitted waves.
Up to now, we have not yet discussed the polarization state of the waves.

Let us focus on the electric field vector. As the electric field vector is normal
to the propagation direction, it may be represented as the sum of two compo-
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nents: one of them being parallel to the incidence plane (p-component), and
one normal to the incidence plane (parallel to the y-axis – s-component). In
the following, both of these special cases will be treated separately.

For the unambiguous characterization of the polarization state, we intro-
duce unit vectors es and ep in the following manner:

E(e) = E(e)
s + E(e)

p ≡ E(e)
s es + E(e)

p e(e)
p

E(r) = E(r)
s + E(r)

p ≡ E(r)
s es + E(r)

p e(r)
p

E(t) = E(t)
s + E(t)

p ≡ E(t)
s es + E(t)

p e(t)
p

where the unit vectors for the s-component are all directed along the y-axis,
while those for p-polarization are defined as indicated in Fig. 6.3. The electric
field components fixed in (6.4) may now be expressed through the s- and
p-components of the electric fields according to:

E
(e)
x = E

(e)
p cos ϕ

E
(e)
y = E

(e)
s

E
(e)
z = −E

(e)
p sin ϕ

E
(r)
x = −E

(r)
p cos ϕ

E
(r)
y = E

(r)
s

E
(r)
z = −E

(r)
p sin ϕ

E
(t)
x = E

(t)
p cos ψ

E
(t)
y = E

(t)
s

E
(t)
z = −E

(t)
p sin ψ

Then, (6.4) may be rewritten as:

cos ϕ
(
E(e)

p − E(r)
p

)
= E(t)

p cos ψ (6.6)

E(e)
s + E(r)

s = E(t)
s (6.7)

Thus, the interface has a different effect on the s- and p-components of the
impinging field. Only for normal incidence equations (6.6) and (6.7) are phys-
ically identical (one must take into consideration, that the vectors

e(e)
p and e(r)

p

are mutually antiparallel for normal incidence, while those for the s-polariza-
tion are always mutually parallel).

Let us describe the effect of the interface in terms of interface transmission
and reflection coefficients for the electric fields as defined by:

rp =
E

(r)
p

E
(e)
p

, rs =
E

(r)
s

E
(e)
s

tp =
E

(t)
p

E
(e)
p

, ts =
E

(t)
s

E
(e)
s

Of course, the two equations (6.6) and (6.7) are insufficient to calculate four
unknown values ts, tp, rs, rp. We need two further equations, and these may
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be obtained from (6.5). The only task is to rewrite the magnetic fields through
electric fields. This will be done now.

Let us express curlE in Cartesian coordinates. That yields:

curlE =

∣∣∣∣∣∣∣∣∣
ex ey ez

∂

∂x

∂

∂y

∂

∂z

Ex Ey Ez

∣∣∣∣∣∣∣∣∣
where ex, ey, and ez are unit vectors directed along the coordinate axes. In
a plane electromagnetic wave, we already know that E may be written as:

E = E0 e−i(ωt−kr) (6.8)

Combining the last two equations, we obtain:

curlE = i

∣∣∣∣∣∣∣
ex ey ez

kx ky kz

Ex Ey Ez

∣∣∣∣∣∣∣ = ik × E

In full analogy to (6.8), we have for the magnetic field:

H = H0 e−i(ωt−kr)

From Maxwells equations we have:

curlE = −∂B

∂ t

B = µ0H

The wavevector may be written as:

k = e
ω

c
n̂

so that we finally obtain:

k × E = µ0ωH → n̂

µ0c
e × E = H (6.9)

The vector e without any sub- and superscripts denotes the unit vector along
the propagation direction of the wave. For the impinging wave, it may be
written as:

e = ex sin ϕ + ez cos ϕ

From (6.9), the magnetic field of the impinging wave may be written as:
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H =
n̂

µ0c

∣∣∣∣∣∣∣
ex ey ez

sin ϕ 0 cos ϕ

E
(e)
x E

(e)
y E

(e)
z

∣∣∣∣∣∣∣
=

n̂

µ0c

{
ex

(
−E(e)

y cos ϕ
)

+ ey

(
E(e)

x cos ϕ − E(e)
z sin ϕ

)
+ ez

(
E(e)

y sin ϕ
)}

That gives us the tangential components:

H(e)
x = − n̂1

µ0c
E(e)

s cos ϕ (6.10)

H(e)
y =

n̂1

µ0c
E(e)

p (6.11)

where we considered that the impinging wave moves in the first medium with
the refractive index n1. In the reflected wave, we have:

e = ex sin ϕ − ez cos ϕ

It is not necessary to repeat the full calculation. Instead, we only have to
replace cos ϕ by − cos ϕ to get the relevant expressions for the reflected fields.
From (6.10) and (6.11) it is then obtained:

H(r)
x =

n̂1

µ0c
E(r)

s cos ϕ

H(r)
y =

n̂1

µ0c
E(r)

p

In the transmitted wave, we have

e = ex sin ψ + ez cos ψ

so that cos ϕ has to be replaced by cosψ in (6.10) and (6.11). Moreover, as
the transmitted wave propagates in the second medium, n1 has to be replaced
by n2. That leads us to:

H(t)
x = − n̂2

µ0c
E(t)

s cos ψ

H(t)
y =

n̂2

µ0c
E(t)

p

The equations (6.5) may now be expressed in terms of the electric field as
follows:

n̂1 cos ϕ
(
E(e)

s − E(r)
s

)
= n̂2 cos ψ E(t)

s (6.12)

n̂1

(
E(e)

p + E(r)
p

)
= n̂2E

(t)
p (6.13)
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Equations (6.6), (6.7), (6.12) and (6.13) form a system of four equations that
allow to calculate four unknown values rs, rp, ts, and tp. For p-polarization,
we find from (6.6) and (6.13)

rp =
n̂2 cos ϕ − n̂1 cos ψ

n̂2 cos ϕ + n̂1 cos ψ
(6.14)

tp =
2n̂1 cos ϕ

n̂2 cos ϕ + n̂1 cos ψ
(6.15)

For s-polarization, we have to use (6.7) and (6.12). That gives

rs =
n̂1 cos ϕ − n̂2 cos ψ

n̂1 cos ϕ + n̂2 cos ψ
(6.16)

ts =
2n̂1 cos ϕ

n̂1 cos ϕ + n̂2 cos ψ
(6.17)

Equations (6.14)–(6.17) form the couple of Fresnel’s equations. In the present
form, they are valid only for isotropic and nonmagnetic materials.

The reflectance of a an interface may now be calculated when remem-
bering that the intensity is proportional to the square of the modulus of the
electric field amplitude, the dielectric function and the z-component of the
velocity of light. That leads to:

R = |r|2 (6.18)

Accordingly, the transmittance through the interface is:

T = 1 − R =
Re (n̂2 cos ψ)
Re (n̂1 cos ϕ)

|t|2 (6.19)

In the simplest case of normal incidence and purely real refractive indices,
we get the well-known formula:

R =
(

n1 − n2

n1 + n2

)2

(6.20)

Figure 6.4 demonstrates the principal angle dependence of the reflectivities
of s- and p-polarized light.

As seen from Fig. 6.4, in the case of non-absorbing materials there ap-
pears a particular angle of incidence where the reflectivity of p-polarized
light becomes zero. This is the so-called Brewsters angle. When a sample is
illuminated at Brewsters angle of incidence, the reflected light will be lin-
early polarized along the s-direction, because the p-component is absent in
the reflected light.

Brewsters angle may be simply calculated requiring rp = 0. From that,
one obtains:
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Fig. 6.4. Dependence of the reflectivity on the angle of incidence. The refractive
indices are real

tan ϕB =
n2

n1
(6.21)

In this case,

ψ =
π

2
− ϕ (6.22)

is also fulfilled. Consequently, when light impinges at Brewsters angle, the
transmitted and reflected wavevectors are perpendicular to each other.

This allows to give a simple geometrical interpretation of the effect. In-
deed, as seen from Fig. 6.5, at Brewsters angle the dipoles in the medium (P )
oscillate parallel to the propagation direction of the reflected light. However,
an oscillating dipole does never irradiate into the direction of its vibration.
Hence, when a surface is illuminated by p-polarized light at Brewster’s an-
gle, there are no dipoles that could contribute to the reflected wave. Conse-
quently, there is no reflectance. Of course, such a situation is impossible for
s-polarization.

Fig. 6.5. Interpretation of Brewsters angle
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6.3 Total Reflection of Light

6.3.1 Conditions of Total Reflection

As seen from (6.1), the maximum possible value of the reflectance is one. In
this case all of the impinging light intensity is reflected by the sample (in
this chapter, we do not regard the case of active laser media, where light is
amplified). We therefore speak on total reflection of light. Let us see what
kind of conditions must be fulfilled in order to obtain total light reflection at
a single interface.

The mathematical formulation of the problem is simple. We have to de-
mand, that

|r| = 1 or |r|2 = 1 (6.23)

is satisfied. We restrict our attention to the practically important situation,
where the first medium has a purely real index of refraction, and analyse the
case of s-polarization. For p-polarization, the same results will be obtained.

From (6.23), we have

1 =
∣∣∣∣n1 cos ϕ − n̂2 cos ψ

n1 cos ϕ + n̂2 cos ψ

∣∣∣∣
That is identical to:

(n1 cos ϕ − Re (n̂2 cos ψ))2 + (Im (n̂2 cos ψ))2

= (n1 cos ϕ + Re (n̂2 cos ψ))2 + (Im (n̂2 cos ψ))2

These equations are automatically fulfilled when one of the participating
refractive or extinction indices becomes infinitively large (first type of solu-
tion). At present, we will only fix this solution, its physical relevance shall be
discussed later. Evaluating the upper equation, we come to the condition.

n1 cos ϕRe (n̂2 cos ψ) = 0

Obviously, the next solutions are n1 = 0 (second solution) and ϕ = π/2
(third solution). These are rather trivial solutions. In terms of (6.19), they
correspond to a vanishing transmittance because of t = 0. In other words,
the electric field is zero in the second medium.

The more interesting case is mathematically hidden in the remaining con-
dition:

Re (n̂2 cos ψ) = 0

According to (6.19), there will be no transmittance through the interface in
this case, no matter how large the Fresnel coefficient t (and the electric field)
might be. Here, the reason is that there is no energy flux along the z-axis.
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From Snell’s law (6.3) we have

cos ψ =

√
1 − n2

1

n̂2
2

sin2 ϕ

so that the remaining solutions must suffice the condition:

Re
√

n̂2
2 − n2

1 sin2 ϕ = 0

In other words, the square root must be imaginary. For that, we must demand
that the radicand is purely real but non-positive. On the other hand, the
radicand may be written in the form:

n2
2 − K2

2 − n2
1 sin2 ϕ + 2in2K2

This expression becomes real, when n2 or K2 are zero. Let us fix the case
of n2 = 0 as the fourth solution. In this case, the radicand is always zero
or negative. If, on the contrary, n2 �= 0, we must require that K2 = 0. In
this case, we have a real radicand, which becomes non-positive when the
additional condition

sin ϕ ≥ n2

n1
(6.24)

is fulfilled (fifth solution). As the light is incident from a medium with a real
index of refraction, the incidence angle should also be regarded as real, and
his sinus value cannot exceed 1. Therefore, the refractive index of the incident
medium must be higher than that of the second one. This is the ‘classical’
condition of total internal reflection.

6.3.2 Discussion

Let us start with the first solution from Sect. 6.3.1. Total reflection is conse-
quently obtained when the refractive index of one of the participating media
becomes infinitively large by modulus. We are familiar with such a situa-
tion – it is obtained from Drude’s formula when the frequency of the light
approaches zero. Accordingly, Fresnel’s equations predict a high reflection at
metal surfaces in the long wavelength range, which is a quite reasonable result.

The second and fourth solutions deal with the situation, that the real part
of one of the refractive indices is zero. The refractive index is then purely
imaginary; accordingly, the dielectric function is real but negative. Again,
such a situation makes sense in metals. When damping is negligible (ω � γ),
the dielectric function according to Drude’s formula may be written as

ε = 1 − ω2
p

ω2 (6.25)
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It is clearly negative for frequencies below the plasma frequency. In fact,
Fresnel’s equations yield the result that a plasma without damping reflects
all light that has a frequency lower than the plasma frequency.

The third solution predicts high reflectance at grazing incidence – this is
an intuitively clear result from everybody’s daily experience.

Finally, the fifth solution represents the familiar case of ‘total internal
reflection’. It appears at the interface between a high-refractive and a low-
refractive index material without damping, when the angle of incidence ex-
ceeds a critical angle defined by condition (6.24). At the critical angle, the
refractive angle is 90◦. Above the critical angle, the sinus of the refractive
angle becomes larger than one, which is impossible in terms of a real an-
gle of refraction. In fact, the angle of refraction becomes complex, while its
real part is still 90◦. It is correct to assume, that in this case there is no light
transmitted into the second medium. When absorption is absent, all the light
must consequently be reflected (therefore total internal reflection).

But there is completely another story when absorption is present. From
Fresnel’s equations it turns out that total reflection will only appear when
K = 0 is fulfilled. Otherwise, one has to expect that the total reflection is
attenuated, although there is still no real angle of refraction, as may be easily
checked from Snell’s law of refraction. So that, in this case, the light must
be partly reflected, and partly absorbed, when penetrating into the second
medium.

6.3.3 Attenuated Total Reflection ATR

It is worth mentioning that there is a spectroscopy modification that is en-
tirely based on the specific conditions necessary for total internal reflection of
light. We are speaking about attenuated total reflection spectroscopy (ATR).
The idea is simple: when two absorption-free materials are in optical contact,
one of them having a high refractive index, and the other one a low, so above
some critical angle of incidence all light should be reflected. That means, a
spectral scan of the reflectivity should give a straight 100% line, as long as
the dispersion of the refractive indices does not violate condition (6.24). On
the contrary, as soon as damping comes into play, total reflection will be de-
stroyed, and the reflectivity will drop in a manner so that it resembles the
spectral behaviour of the absorption coefficient of the medium. Consequently,
these regions of ‘attenuated’ total reflection may give you an idea about the
spectral behaviour of the absorption coefficient. For that reason attenuated
total reflection spectroscopy has become an important tool mainly in physical
chemistry where it may be used to identify substances by their thus identified
‘absorption spectrum’. In practice the method is applied in a way that the
light is incident from a high refractive index material that is assumed to be
free of damping, and bounces onto the interface of a low-index material that
has to be investigated.
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Let us try to understand where the mentioned absorption of light may
occur. In the absence of absorption, the electric field strength in the second
medium may be written as:

E2 = E20 e−i(ωt−kxx−kzz) ;

kx = k sin ψ
(6.26)

kz = k cos ψ

k =
ω

c
n2

From Snell’s law, we find:

sin ψ =
n1

n2
sin ϕ

cos ψ =

√
1 − n2

1

n2
2

sin2 ϕ = i

√
n2

1

n2
2

sin2 ϕ − 1

So that the wavefunction from (6.26) becomes:

e−i(ωt−xn1
ω
c sin ϕ) e−z ω

c

√
n2

1 sin2 ϕ−n2
2 (6.27)

Equation (6.27) describes a wave that travels along the interface in the x-
direction, while its amplitude quickly damps in the direction into the film.
Such waves are called evanescent. Due to this wave, the electric field extends
into the second medium with a certain penetration depth. When the second
medium is absorbing, it becomes clear that the wave is no longer evanescent
and suffers absorption in the second medium.

In principal, ATR may work in broad spectral regions, but its main ap-
plication field is the middle infrared spectral range. Then, the penetration
depth is of the order of some microns. As the high refractive index mate-
rial (the so-called ATR-crystals), germanium may be utilized (n ≈ 4.0) or
KRS5 (n ≈ 2.37). In order to achieve a better sensitivity in practice, mul-
tiple bouncing of the light beam onto the interface is allowed, so that even
weak absorption lines that appear in the attenuated total reflection spectrum
are enhanced after a few bounces.

6.4 Metal Surfaces

6.4.1 Metallic Reflection

We are now in the position to discuss the particular reflection behaviour of
metallic surfaces. From daily experience, everybody knows that metals have
a high reflectance. This statement is valid in different spectral regions, and
we will treat them separately.
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Let us assume, that we deal with normal incidence of the light, and that
the incidence medium is air. We will therefore assume, that the refractive
index n1 = 1, while the metal (second medium) has a refractive index n and
an extinction coefficient K. The normal incidence reflectance of the metal
surface according to Fresnel’s equations is:

R =
(n − 1)2 + K2

(n + 1)2 + K2
(6.28)

To determine the reflectance of the metal surface, we have to remember that
the classical response of the free electrons is described by Drude’s function
(3.5) or (3.10). Let us start with the low-frequency limit, when ω � γ is
fulfilled. From the asymptotic behaviour of Drude’s function (3.15) we have:

ε ≈ i
σstat

ε0ω

and therefore

n ≈ K ≈
√

σstat

2ε0ω

These expressions may be used to evaluate the reflectance (6.28) up to the
lowest order of ω. As the result, we obtain the Hagen-Rubens-Equation:

R|ω→0 = 1 −
√

8ε0ω

σstat
(6.29)

The lower the frequency, and the higher the conductivity, the closer the re-
flectance will approach the 100%-value. That high reflection is caused by the
large values of n and K and may be regarded as an example of the first
solution of the total reflection condition as obtained in Sect. 6.3.1.

At higher frequencies, one could assume that Drude’s function should be
able to explain the experimentally established metallic reflectance. As an ex-
ample, Fig. 6.6 shows the normal incidence reflectance of several noble metal
surfaces. As we deal with bulk samples here, the transmittance is definitely
equal to zero. The silver surface has a high reflectance over the whole VIS,
and correspondingly, it does not appear in any colour when being illuminated
with white light. On the contrary, gold absorbs the blue and violet, so it has
an orange-yellow appearance when illuminated with white light. In copper,
even green light is absorbed, thus causing the typical reddish appearance of
this metal.

Let us now see what will be predicted from Drude’s theory. In all of the
mentioned metals, the plasma frequency of the free charge carriers corre-
sponds to a wavenumber between 70000 cm−1 and 75000 cm−1, which is in
the ultraviolet spectral region. The collision times between the electrons are
also similar to each other – they range between 1 × 10−14s and 4 × 10−14s.
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Fig. 6.6. Normal incidence reflectance of silver (solid line), gold (dash), and copper
(short dash)

Fig. 6.7. Optical constants of silver and gold (symbols). The solid lines correspond
to the fit by (5.9)

With these parameters, Drude’s function predicts a reflectivity of approxi-
mately 99% over the whole VIS for all of these metals, which is not consistent
with the experimental findings.

On the other hand, when the wavelength exceeds 650 nm, the reflectivities
of the different metals are indeed close to each other, which suggests that
Drude’s function may at least be used to describe the optical response of
metal surfaces at higher wavelength values.

In order to understand what is going on here, it makes sense to look at the
optical constants of some of these metals. Figure 6.7 depicts the optical con-
stants of gold and silver, which are consistent with the measured reflectance
(symbols). In order to compare with Fig. 3.1, we have now chosen an abscissa
that is proportional to the frequency, namely the wavenumber.
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Fig. 6.8. Calculated dielectric loss function of silver and gold

As it is seen from Fig. 6.7 and 3.1, at higher wavelength, the behaviour of
the optical constants of real metals indeed resembles that of Drude’s function.
In this region, we have optical constants satisfying n � K, which again
results in high reflection, but now in terms of the fourth solution of the
total reflection conditions. However, in the short wavelength region, serious
deviations from Drude’s theory occur, so that the response of free electrons
alone seems insufficient to explain the observed behaviour.

The key for understanding the optical constants as shown in Fig. 6.7 is
to include the response of the bound electrons into the description ((3.1)
or (5.9)). This is still a completely classical approach, but it leads to an
astonishingly good reproduction of the metal’s optical constants.

The solid lines in Fig. 6.7 demonstrate the dispersion of the metal optical
constants as they may be calculated by a merger of Drude’s formula with a
multioscillator model according to (5.9). To fit the optical constants of silver
in the given spectral region, it is sufficient to introduce one oscillator that
accounts for the bound electrons. In the case of gold, five oscillators have
been used.

So that we can state, that Drude’s function is suitable for describing the
optical constants of metals at a sufficiently long wavelength. When the wave-
length becomes too short, the response of bound electrons must be considered,
which is done in classics by means of Lorentzian oscillators.

To conclude this subchapter, let us return to the reflectance curves from
Fig. 6.7. As already mentioned, at a high wavelength there is generally a high
reflection. It starts to drop when the wavelength becomes shorter than a
certain threshold value, which is material dependent. When comparing with
the optical constants from Fig. 6.7, we see that the drop in the reflectivity is
accompanied by characteristic features in the optical constants. The question
is: Is there any simple function of the optical constants that may predict the
mentioned “threshold” wavelength?

Fortunately, there is. It is the so-called dielectric loss function, as in-
troduced in the Sect. 5.3 (Problem 6). Figure 6.8 shows the loss function
corresponding to the optical constants depicted in Fig. 6.7.
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A comparison between Figs. 6.6 and 6.8 demonstrates, that the loss func-
tion resembles the spectral behaviour of the reflectance, while the peaks in
the loss function are spectrally close to valleys in the reflection curve.

6.4.2 Extended Detail: Propagating Surface Plasmons

We will conclude Chap. 6 with two more complicated examples, which deal
with surprising optical effects that may be observed at interfaces and may at
least partially be described within the theoretical framework of Fresnels equa-
tions. In this subsection 6.4.2, we will shortly derive the dispersion relation
of propagating surface plasmons at metal surfaces, which are utmost impor-
tant in applied optical surface spectroscopy. The second example (Sect. 6.5) is
dedicated to the effects of giant birefringent optics occurring at the interfaces
between optically anisotropic materials.

We have already dealt with surface plasmons in small spheres (Sect. 4.5.3).
In that case, the plasmon has been excited at a spherical surface. We will now
consider the case of plane surfaces.

Let us start again from a thought experiment. Imagine, that we are looking
for a spectroscopic method that is extremely sensitive to any effects located
near the interface. One would naturally choose a geometry where the electric
field at the interface would be large. Correspondingly, one should require that
the energy of the impinging wave is neither transmitted through the interface,
nor reflected from the interface, but accumulated ‘in’ the interface region. Of
course, as seen from (6.19), that may never happen as long as we deal with
one single ideal interface. However, let us now assume at the first time in this
chapter, that we do not deal with a single surface, but with a thin film. This
situation is sketched in Fig. 6.9.

Fig. 6.9. Assumed thin film system
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Let us further assume, that the light impinges from the ‘zeros’ medium
with an angle of incidence ϕ0. The refractive index n0 shall be purely real
as well as the refractive index n2 of the last medium. We want to find the
physical conditions that lead to a high electric field at the interface between
the media 1 and 2. From Snell’s law, we have

n0 sin ϕ0 = n̂1 sin ϕ1 = n2 sin ϕ2

According to our general idea, we require that the transmittance of the whole
system vanishes. Additionally, we try to achieve a vanishing reflectance at the
interface between the media 1 and 2. To do so, we assume p-polarization and
tune the angle ϕ1 to the Brewster’s angle. Both conditions together may be
written as: ⎧⎪⎪⎨

⎪⎪⎩
T = 0 ⇒ 1 > sin ϕ0 ≥ n2

n0

Rp,12 = 0 ⇒ tan ϕ1 =
n2

n̂1

⎫⎪⎪⎬
⎪⎪⎭

Because the angles ϕ1 and ϕ0 are mutually connected by Snell’s law, one may
show that the upper conditions are fulfilled when (6.30) is satisfied:

1 > sin2 ϕ0 =
n2

2

n2
0

n̂2
1

n̂2
1 + n2

2
≥ n2

2

n2
0

(6.30)

Let us look at condition (6.30) in more detail. It has been obtained assuming
the geometry of Fig. 6.9 and requiring, that the transmittance of the whole
system vanishes as well as the reflectance at the second interface. Condition
(6.30) states that this is principally possible, when several additional require-
ments are fulfilled. First of all, it is obvious that the incidence medium must
have a higher index of refraction than the last one. On the contrary, medium
1 must have a purely imaginary index of refraction. This is clearly impossible,
but we know, that several metals have refractive indices with an imaginary
part that is much higher than the real one, thus coming close to what would
be necessary. So, we may assume that the film material 1 is a metal, for ex-
ample silver. In order to fulfil the right-hand inequality in (6.30), we must
further demand:

n̂2
1 < −n2

2 ⇒ ε1 < −ε2 (6.31a)

The left-hand inequality in (6.30) restricts the index of refraction of the
incidence medium. Indeed, we must require:

n2
0 >

n̂2
1n

2
2

n̂2
1 + n2

2
(6.31b)

Then, (6.30) defines an incidence angle (the resonance angle) where the re-
flectance of p-polarized light of the whole system should be minimized, while
the transmittance is definitely zero.
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Fig. 6.10. Reflectance of p-polarized light (λ = 632.8 nm) of the system
glass/silver/air as a function of the incidence angle

Let us look at an example. Figure 6.10 shows you an experimental angular
reflectance scan in a thin film system, where a 50 nm thick silver film has been
deposited on quartz glass. The light (λ = 632.8 nm) was incident from the
quartz side. We see, that at an angle of approximately 43 deg, the reflectivity
has a sharp gap. As the transmittance is zero, the light intensity is indeed
absorbed in the system. But we do not know, where.

Fortunately, there is a couple of strong indications that the effect is really
located at the surface between silver (medium 1) and air (medium 2). Let
us utilize (6.30) to estimate the resonance angle ϕ0 predicted by our theory.
Equation (6.30) is now only an approximation, because, in fact, the refractive
index of silver is not purely imaginary. But the real part is small, as seen
from Fig. 6.7, so that we assume n̂2

1 ≈ −16 at the given wavelength. The
refractive index of air is 1, and that of glass close to 1.5. That leads to
a theoretical resonance angle of 43.5 deg, quite close to the value obtained
from the experimental data given in Fig. 6.10.

Additionally, the solid line in Fig. 6.10 shows the result of a theoretical fit
of the experimental data. The theoretical apparatus for the fit is derived in
Chap. 7, but it is worth mentioning that the given fit corresponds to a silver
thickness of 46.2 nm, which is in good agreement to the intentional value of
50 nm.

Let us now understand what happens at the interface between silver and
air. The horizontal component of the wavevector kx may be written as:

kx =
ω

c
n0 sin ϕ0 =

ω

c

√
n2

2n̂
2
1

n̂2
1 + n2

2
=

ω

c

√
ε1ε2

ε1 + ε2
(6.32)

When (6.31a) is satisfied, expression (6.32) yields a real value for the horizon-
tal component of the wavevector. Let us look at the normal components. In
difference to the horizontal ones, they are different in each material. We have:
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kz,0 =
ω

c
n0 cos ϕ0 → real

kz,1 =
ω

c
n̂1 cos ϕ1 =

ω

c
n̂1

√
1 − sin2 ϕ1 =

ω

c

√
ε1

√
ε1

ε1 + ε2

= ± i
ω

c

√∣∣∣∣ ε2
1

ε1 + ε2

∣∣∣∣ → imaginary (6.33)

kz,2 =
ω

c
n2 cos ϕ2 =

ω

c
n2

√
1 − sin2 ϕ2

= ± i
ω

c

√∣∣∣∣ ε2
2

ε1 + ε2

∣∣∣∣ → imaginary

As expected, in the incident medium we have a propagating wave, while in
media 1 and 2, no wave propagation is possible (in fact, we have again total
reflection conditions here).

Accordingly, the electric fields in the media 1 and 2 may be written as:

E1 = E10 e−i
(

ωt− ω
c

√
ε1ε2

ε1+ε2
x
)

e
∓(ω

c )
√∣∣∣∣ ε2

1
ε1+ε2

∣∣∣∣z

E2 = E20 e−i
(

ωt− ω
c

√
ε1ε2

ε1+ε2
x
)

e
∓(ω

c )
√∣∣∣∣ ε2

2
ε1+ε2

∣∣∣∣z

It makes no sense to assume, that we have an exponentially increasing electric
field at infinity in medium 2, so that we choose the descending electric field
here. For continuity reasons at the interface, in medium 1 we choose the
ascending solution. So that we obtain finally:

E1 = E10 e−i
(

ωt− ω
c

√
ε1ε2

ε1+ε2
x
)

e
(ω

c )
√∣∣∣∣ ε2

1
ε1+ε2

∣∣∣∣z
(6.34)

E2 = E20 e−i
(

ωt− ω
c

√
ε1ε2

ε1+ε2
x
)

e
−(ω

c )
√∣∣∣∣ ε2

2
ε1+ε2

∣∣∣∣z

Expressions (6.34) describe an evanescent wave travelling along the surface,
while descending by amplitude into the media 1 and 2. Consequently, the
electric field is mainly concentrated at the interface, and this is indeed what
we wanted to achieve. The travelling evanescent wave excites the movement of
free electrons at the metal (medium 1) surface, and their collective oscillation
is called a propagating surface plasmon. The couple of equations (6.32) and
(6.33) forms the dispersion law of the surface plasmons (any k(ω)-dependence
is called a dispersion law). The penetration depth of the evanescent field
becomes infinitively small, when ε1 → −ε2, and in this case the field is most
effectively confined to the interface region.

The excitation of propagating surface plasmons is an outstandingly ef-
fective experimental tool in surface spectroscopy. Indeed, when one has to
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Fig. 6.11. Fit of reflectance curves of a system glass/silver/adsorbate CuPc/air,
obtained at 560 nm wavelength. The silver thickness dAg is 33 nm for all samples

detect weak absorption centres at a metal surface, any background signal
resulting from the bulk will be highly disturbing. On the contrary, when a
strong electric field is confined in the surface region, the bulk background
signal may be strongly reduced in significance.

In practice, an ultrathin but absorbing adsorbate layer at the silver-air-
interface will significantly change the spectral features occurring in the re-
flectance of the system. To give an idea on the sensitivity of the method,
Fig. 6.11 presents reflectance spectra obtained from a 33 nm silver film on
glass with ultrathin organic adsorbate layers. As the adsorbate, a blue-
coloured organic dye (copperphthalocyanine CuPc) has been choosen. The
figure demonstrates, that even ultrathin adsorbate layers with a thickness
down to 0.9 nm are easily detectable.

Again, the full line in Fig. 6.11 correspond to theoretical fits obtained from
equations that will be derived in Chap. 8.

But what is the reason for the high sensitivity? The point is, that the
electric field strength at the interface may be extremely high, even when no
light intensity is transmitted through the interface. In the present geometry,
the local electric field strength amplitude at the interface may exceed that of
the impinging wave for several orders of magnitude. Again, some patience will
be of use, because for an accurate calculation we would need the theoretical
apparatus, which will be derived in Chap. 7.
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Fig. 6.12. Prism coupler geometries: left: Kretschmar–Raether geometry, right:
Otto geometry

In practice, propagating plasmons at the metal-air interface are most eas-
ily excited by means of so-called prism couplers. In Fig. 6.12, two experimental
geometries are presented, which are commonly in use for the optical excita-
tion of propagating surface plasmons. The arrangement shown in Fig. 6.9
corresponds to the Kretschmar–Raether geometry.

6.5 Extended Detail: Anisotropic Materials

6.5.1 Interface Reflection Between an Isotropic
and an Anisotropic Material

Concluding the treatment of interfaces, let us briefly discuss the general-
ization of Fresnel’s equations to the interface between an optically isotropic
and an optically anisotropic material. In principle, this subject is beyond the
frames of this book as they have been defined in the introduction. Never-
theless, optically anisotropic films may become important for specific future
applications, and therefore it is worth to give a brief introduction to this field.

This section will not deal with derivations of formulae. Instead, some
knowledge on light propagation in anisotropic media will be presumed, and
the corresponding modifications that occur in Fresnel’s reflection coefficients
will be rather guessed than derived. The material given in Sect. 6.5 will not
be necessary to understand the following chapters, so that the section may
be skipped by the reader as well.

We restrict our discussion to the special case of uniaxial and nonabsorbing
anisotropic materials. In this case, instead of (2.9), the electrical displacement
vector will be given by:

D = ε0εE

Where ε is now a symmetric tensor. In a suitable coordinate system (which
is not necessarily identical to the coordinate system used in this chapter so
far!!), it may be written in the diagonalized form:
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ε =

⎛
⎜⎝ εxx 0 0

0 εyy 0
0 0 εzz

⎞
⎟⎠

Let us assume an uniaxial material with an optical axis parallel to the z-axis.
In this case,

εxx = εyy �= εzz

This leads to a completely different behaviour of an electromagnetic wave.
Indeed, let us regard the wave (2.2). When the wave travels along the z-axis,
the displacement vector D may contain an x- and a y-component, both of
them ‘feeling’ the same dielectric function εxx. This wave travels with a given
phase velocity determined by εxx, no matter how the light is polarized.

Let us now discuss the case of a wave propagating into a direction, that
forms an angle ϑ to the z-axis. Let us for simplicity assume, that the k-vector
lies in the x–z-plane. For vertical polarization (D parallel to the y-axis) only
εyy is relevant, independent of the angle ϑ. Therefore, such a wave travels
with a phase velocity that does not depend on ϑ. It is called an ordinary
wave. On the contrary, for the other polarization (D is in the x–z-plane), it
‘feels’ a superposition of the different dielectric functions εxx and εzz, while
their relative weights depend on the angle ϑ. The phase velocity of this wave
will depend on ϑ. Due to this quite unusual behaviour, such a wave is called
an extraordinary one. Any arbitrarily polarized wave that impinges onto the
surface of an uniaxially anisotropic material will split off into the ordinary
and extraordinary waves, a behaviour that is called optical birefringence.

Let us regard some useful equations. We rewrite the condition of uniaxi-
ality in the following manner:

εxx = εyy ≡ ε⊥ �= εzz ≡ ε‖

The ordinary wave travels with the so-called ordinary refractive index de-
fined as:

no ≡ √
ε⊥

Without derivation, we present the expression for the angle-dependent re-
fractive index valid for the extraordinary wave na:

na = na (ϑ) =
none√

n2
e cos2 ϑ + n2

o sin2 ϑ

ne ≡ √
ε‖

Where ne is the so-called extraordinary refractive index. Obviously, for a
given ϑ, the relative weights of the ordinary and extraordinary refractive
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indices are given by sin ϑ and cos ϑ, respectively. no and ne form the pair of
principal refractive indices of an uniaxial material.

This is the key to our simplified treatment of Fresnel’s reflection coeffi-
cients in the anisotropic case. It will enable us to guess the correct expressions.
Let us rewrite Fresnel’s equations valid for the isotropic case in the following
manner:

rs =
n1 cos ϕ −

√
n2

2 − n2
1 sin2 ϕ

n1 cos ϕ +
√

n2
2 − n2

1 sin2 ϕ (6.35)

rp =

n2 cos ϕ − n1

√
1 − n2

1

n2
2

sin2 ϕ

n2 cos ϕ + n1

√
1 − n2

1

n2
2

sin2 ϕ

Again, we will now assume, that medium 1 is isotropic, while medium 2 is
anisotropic. The problem is, that different orientations of the optical axis with
respect to the incidence plane are possible. Let us regard three special cases:

a) optical axis perpendicular to the surface

In this case, s-polarized light always senses the ordinary refractive index.
Therefore, in rs, one only has to replace n2 by the ordinary index n2o. For p-
polarization, a superposition of n2o and the extraordinary index n2e is sensed.
The higher the incidence angle, the higher the contribution of n2e. Therefore,
in the pre-factor of cosϕ, we replace n2 by n2o. On the contrary, in the
prefactor of sinϕ, n2 will be replaced by n2e. We obtain:

rs =
n1 cos ϕ −

√
n2

2o − n2
1 sin2 ϕ

n1 cos ϕ +
√

n2
2o − n2

1 sin2 ϕ

rp =

n2o cos ϕ − n1

√
1 − n2

1

n2
2e

sin2 ϕ

n2o cos ϕ + n1

√
1 − n2

1

n2
2e

sin2 ϕ

(6.35a)

b) optical axis parallel to both the incidence plane and the surface

Again, s-polarized light always senses the ordinary refractive index. There-
fore, for rs, (6.35a) remains valid. For p-polarization, again a superposition
of n2o and the extraordinary index n2e is sensed. In difference to the previous
case, n2e and n2o interchange their roles. We find:
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rs =
n1 cos ϕ −

√
n2

2o − n2
1 sin2 ϕ

n1 cos ϕ +
√

n2
2o − n2

1 sin2 ϕ

rp =

n2e cos ϕ − n1

√
1 − n2

1

n2
2o

sin2 ϕ

n2e cos ϕ + n1

√
1 − n2

1

n2
2o

sin2 ϕ

(6.35b)

c) optical axis perpendicular to the incidence plane

This is the simplest case. No matter what incidence angle is applied, the s-
polarization always senses the extraordinary index, while the p-polarization
always senses the ordinary one. From (6.35) it is therefore obtained:

rs =
n1 cos ϕ −

√
n2

2e − n2
1 sin2 ϕ

n1 cos ϕ +
√

n2
2e − n2

1 sin2 ϕ

rp =

n2o cos ϕ − n1

√
1 − n2

1

n2
2o

sin2 ϕ

n2o cos ϕ + n1

√
1 − n2

1

n2
2o

sin2 ϕ

(6.35c)

Equations (6.35a–c) represent important special cases of Fresnel’s reflection
coefficients for the interfaces between optically isotropic and anisotropic me-
dia.

6.5.2 Giant Birefringent Optics

Quite interesting optical effects may arise at the interfaces between isotropic
and anisotropic materials. They form the field of the so-called Giant Bire-
fringent Optics GBO.

The general idea is to match one of the principal indices of the anisotropic
material to the index of the incident medium. For example, let us regard
case c) from Sect. 6.5.1. When n1 = n20 is fulfilled, from (6.35c) it follows:

rp =

n2o cos ϕ − n1

√
1 − n2

1

n2
2o

sin2 ϕ

n2o cos ϕ + n1

√
1 − n2

1

n2
2o

sin2 ϕ

= 0 ∀ ϕ

Instead of one well-defined Brewster’s angle, the p-polarized light will not be
reflected at any angle of incidence, although s-polarized light is still reflected.
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Of course, such effects facilitate the design of effective polarizers. The effect is
simple to understand, because in the given geometry, the p-polarization senses
only the ordinary refractive index. In the case that the latter is matched to
the incidence medium index, of course, light reflection cannot occur because
there is no difference in the refractive indices.

As another example, let us regard case a) in Sect. 6.5.1. We require, that
n1 = n2e. From (6.35a) it follows that

rp =

n2o cos ϕ − n1

√
1 − n2

1

n2
2e

sin2 ϕ

n2o cos ϕ + n1

√
1 − n2

1

n2
2e

sin2 ϕ

=
n2o − n1

n2o + n1
�= rp (ϕ)

Therefore, Brewster’s angle is completely absent in this case, instead, the
reflectance of p-polarized light is completely independent on the angle of
incidence. Such a behaviour may be of use when one wants to design omni-
directional mirrors.

Table 6.1 gives an overview on important GBO-effects. Today, GBO-
effects are in practical use in polymer coatings, because in polymers a well-
defined optical anisotropy may easily be induced by mechanical stretching of
the films.

Table 6.1. Examples for GBO-Effects: “e” denotes the extraordinary, and “o”
denotes the ordinary principal refractive index. ϕ is the angle of incidence, and the
subscripts “s” and “p” denote s- or p-polarization. z is the direction perpendicular
to the film surface

Optical axis in
material 1

Optical axis in
material 2

Matching
condition

GBO-effect

isotropic ‖ to surface and
‖ to incidence plane

n1 = n2o Rs = 0 ∀ ϕ

isotropic ⊥ to incidence plane n1 = n2o Rp = 0 ∀ ϕ

‖z ‖z n1e = n2o and
n1o = n2e

Rs = Rp ∀ ϕ

Isotropic or ‖z ‖z n1e = n2e Rp �= Rp(ϕ)
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7.1 Transmittance and Reflectance of a Thick Slab

In the previous chapter, we discussed Fresnel’s formulae that were necessary
to understand the effects of plane interfaces on a plane electromagnetic wave.
In fact, up to now we regarded the effect of a single interface. Because a
practically available sample such as shown in Fig. 6.1 always contains more
than one interfaces, it will now be our purpose to understand the interplay of
the effects caused by different interfaces contributing to the overall spectrum
of the sample.

Again, we will restrict our attention to parallel interfaces, the typical
situation in thin film optics. We start from the simplest case – a thick slab of a
transparent material. In the following, we will use the terminus ‘transparent’
in the sense that the optical losses are negligible. For example, a typical
window pane has two parallel surfaces, so that the light transmitted through
the window is at least determined by the transmission coefficients of the two
surfaces.

In fact, the situation in somewhat more involved. This becomes clear from
Fig. 7.1. The figure shows the sample geometry relevant for the regarded thick
slab. So we have a first medium, from where the light is incident. The imping-
ing light passes, of course, the first interface with a transmittance determined
by (6.19). To avoid confusion, we return to the symbols used in Sect. 6.2 and
regard the incidence medium as the first one, while the slab material forms
the second one. The transmittance T12 denotes the transmittance through the
interface, when the light comes from medium 1 and passes into medium 2.
Impinging on the second interface, the primarily transmitted light my again
be transmitted into the ‘third’ medium, which is regarded to be identical to
the first one. Therefore, the relevant transmittance is T21. So that, first of
all, the transmittance of the whole system including both interfaces depends
on the product T12T21.

But this is not the whole story. At both interfaces, a certain fraction of the
light may be reflected. The light reflected at the first surface (reflectance R12)
clearly contributes to the reflectance of the whole slab. But there is another
situation in the case of light reflected at the second surface (R21). It travels
back to the first surface, and contributes to the slab’s reflectance when it is
transmitted through the first surface (now with a transmittance T21). How-
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Fig. 7.1. Geometry of the sample

ever, it may be again reflected (R21) and impinges onto the second surface for
the second time. Again, it has a chance to be transmitted (and to contribute
to the transmittance of the slab), or reflected, so that the game starts again.
We come to the conclusion, that these internal multiple reflections form a
further contribution to the light transmitted through the whole slab.

Let us formulate the considerations made above in an exact quantitative
manner. Obviously, the reflectance R of the whole slab may be calculated
by adding up the single contributions of the primarily reflected wave and
those which arise as the result of multiple internal reflections. In fact, Fig. 7.1
indicates the philosophy of the calculation. In the case of negligible damping,
we find:

R = R12 + T12R21T21 + T12R
3
21T21 + . . .

(7.1)

= R12 + T12R21T21

∞∑
j=1

(
R2

21
)j−1

= R12 +
T12R21T21

1 − R2
21

=
2R12

1 + R12

In full analogy, the transmittance T of the slab is:

T = T12T21 + T12R
2
21T21 + . . .

(7.2)

= T12T21

∞∑
j=1

(
R2

21
)j−1

=
T12T21

1 − R2
21

=
1 − R12

1 + R12

It is immediately seen, that T and R sum up to 1. In the case of normal
incidence, in accordance with equations (6.20) and (6.19) we have:

R12 = R21 =
(

n2 − n1

n2 + n1

)2

(7.3)

T12 = 1 − R12 =
4n1n2

(n2 + n1)
2 = T21 (7.4)
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Table 7.1. Overview on normal incidence transmittance and reflectance for inter-
faces or slabs on air

Problem Equation Glass
(n ≈ 1.5
in the VIS)

Silicon
(n ≈ 3.45
in the IR)

Germanium
(n ≈ 4.0
in the IR)

Transmittance through
the surface

4n/(n + 1)2 0.96 0.7 0.64

Reflectance of the sur-
face

(n − 1)2/(n + 1)2 0.04 0.3 0.36

Transmittance through
a slab

2n/(n2 + 1) 0.923 0.535 0.47

Reflectance of a slab (n − 1)2/(n2 + 1) 0.077 0.465 0.53

A further simplification is valid, when we deal with a blank transparent sub-
strate, embedded in air. In this case, n1 = 1. Let us skip the subscript for the
refractive index of the slab material (n2 = n) and assume normal incidence.
We quickly find:

R|ϕ=0 =
(n − 1)2

n2 + 1
(7.5)

T |ϕ=0 =
2n

n2 + 1
(7.6)

The couple of equations (7.1)–(7.6) enable the reader to calculate the trans-
mittance or reflectance of a transparent slab. Consequently, they enable one
to perform the task of a forward search. Table 7.1 summarizes some special
cases of the application of these equations.

From the measured normal incidence transmittance of a slab, the refrac-
tive index may easily be calculated inverting (7.6) according to:

n = T−1 +
√

T−2 − 1 (7.7)

Hence, in the case of a damping-free slab, the reverse search is also a rather
trivial matter.

At normal incidence, (7.1) and (7.2) may be simply generalized to the
case of absorbing slab materials. Indeed, each bouncing onto the interface
formed by the slab and the ambient is preceded by a penetration of the slab.
The intensity damping per penetration is proportional to exp(−αdS), where
dS is the geometrical thickness of the slab. So that the relevant expressions
are obtained by means of the substitution:

T21 → T21 e−αdS R21 → R21 e−αdS

Of course, the Fresnel’s reflection and transmission coefficients are now de-
pendent on the real and imaginary parts of the refractive indices. We obtain:
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R =
R12

[
1 − e−2αdS (2R12 − 1)

]
1 − R2

12 e−2αdS
(7.8)

T =
(1 − R12)

2 e−αdS

1 − R2
12 e−2αdS

(7.9)

These expressions need some explanation.
First of all, we state that the slab thickness dS is only relevant for the

values of T and R, when the slab material is absorbing. Then, for αdS → ∞,
the transmittance according to (7.9) becomes zero, while the reflectance (7.8)
approaches that of the first interface. In the absence of absorption, equations
(7.8) and (7.9) become identical to (7.1) and (7.2) and do thus not depend on
the thickness of the slab. This is a familiar matter, because everybody knows
from his daily experience, that the transmittance of a window pane does not
depend on its thickness.

Nevertheless, it is intuitively clear, that the derived equations cannot
find application when the slab thickness becomes too small. For d = 0, we
clearly do not have any slab at all. Correspondingly, the reflectance should
become zero, and the transmittance 1. But our equations state, that even for
a vanishing slab thickness, there is still a finite reflection signal, which clearly
lacks any sense.

For that reason, this section is named ‘Transmittance and reflectance of
a thick slab’. The equations derived so far cannot be applied to slabs with a
(vanishingly) small thickness. It will be our next task to clarify what is exactly
meant by the word ‘thick’, and to derive a criterion for the applicability of
equations (7.8) and (7.9). But before coming to this point, let us make a
further remark concerning the reverse search procedures.

As we have mentioned before, (7.7) allows to calculate the refractive index
of a damping-free slab material from the normal incidence transmittance. If
the material shows absorption, of course, knowledge of the transmittance
alone is insufficient to calculate n and K without further model assumptions.
On the other hand, the pair of optical constants may be calculated from
transmittance and reflectance of the slab, either numerically or inverting
equations (7.8) and (7.9) to find explicit expressions for n and K as a function
of T and R. The refractive index of glass as shown in Fig. 4.2 has been
determined this way from experimental T - and R-data.

7.2 Thick Slabs and Thin Films

We are now in a somewhat curious situation. We have derived a seemingly
exact formula for the transmittance and reflectance of a slab of a transparent
material, that turned out to be independent on the slab thickness. On the
other hand, we surely know that the formula leads to an incorrect result when
being applied to a very (vanishingly) thin slab. That means, that somewhere
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Fig. 7.2. Normal incidence transmittance of a 142 µm thick glass slab as measured
at a commercial Shimadzu UV3001PC spectrophotometer with various values of
the spectral bandwidth

in our derivation, we have presumed that the slab is ‘sufficiently’ thick. But
where? And what is meant by ‘sufficiently’ thick?

In fact, the situation is even more worse. The applicability of (7.1) and
(7.2) turns out to not depend on the absolute value of the thickness of the
slab. This is illustrated in Fig. 7.2. Here we see a part of the measured NIR
transmittance of a 142 µm thick glass slab. The measured transmittance turns
out to depend on the spectral bandwidth ∆λ of the impinging irradiation.
For a high spectral bandwidth (∆λ = 4 nm), the measured transmittance is
more or less constant at a level of 0.925. This is fully consistent with our equa-
tions derived so far and corresponds to a quite reasonable refractive index of
approximately 1.49. In this case, our equations are suitable for the descrip-
tion of the measurement. On the other hand, when the spectral bandwidth
is smaller (higher degree of monochromaticity), there occur oscillations in
the spectrum of the same sample, which cannot be explained in terms of the
previous equations. In fact, ∆λ does not encounter into our equations at all.

So what is wrong? The periodic oscillations in the transmittance spectra
from Fig. 7.2 indicate that there is an interference mechanism present in the
system. Clearly, the multiply reflected waves in Fig. 7.1 may constructively
or destructively interfere with each other, which would lead to a periodic
modulation of the transmitted or reflected light intensity. But that would
require mutually coherent light waves. On the other hand, in our derivation
of (7.1) and (7.2) we could not consider any interference effects, because we
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superimposed the intensities of the partial waves, and thus neglected the
phase information necessary for any interference description.

The addition of intensities (instead of electric fields) is correct as long as
the optical path difference between the superimposed partial beams is larger
than the coherence length of the light (incoherent case). Therefore, our theo-
retical treatment ((7.1)–(7.9)) must be correct when the thickness of the slab
exceeds the coherence length. The coherence length, in turn, is inversely pro-
portional to ∆λ. Therefore, for a small ∆λ, the sample may be too thin to be
described in terms of our equation, although this treatment may be correct
for a higher ∆λ. In the extreme case, when the slab thickness approaches
zero, it will be smaller than any reasonable coherence length, so that, for
ultrathin layers, the application of our equation makes no sense. These gen-
eral considerations will allow us to formulate a quantitative criterion for the
applicability of (7.1) and (7.2):

Let us regard a light beam in Fig. 7.1 travelling from the first interface
to the second one and then backwards to the first. Its travelling time t will
be t = 2ndS/c (normal incidence). For incoherent superposition, we shall
require:

t =
2nds

c
> tcoh

with tcoh – coherence time of the light. In full analogy to the treatment of
dephasing due to collisions in Sect. 4.2 ((4.3)), a finite coherence time causes
a finite spectral bandwidth according to:

∆ω =
2

tcoh

while

∆ω =
2πc

λ2 ∆λ

Combining the above relations, we obtain the following condition for inco-
herent superposition (and therefore the applicability of our equations):

ds >
λ2

2πn∆λ
or ∆λ >

λ2

2πnds
(7.10)

Condition (7.10) is the result we wanted to obtain.
Let us check in how far this condition is consistent with the experimen-

tal observations from Fig. 7.2. We have a slab thickness of 0.142 mm and a
refractive index near 1.5. The wavelength is approximately 1340 nm. For in-
coherent superposition (no interference pattern), according to (7.10) for the
mentioned parameters we get the condition:

∆λ > 1.3

which is fully consistent with the spectra from Fig. 7.2.
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In our terminology, we speak on a thick slab when condition (7.10) is
fulfilled.

On the contrary, when condition (7.10) is violated, we have to expect that
an interference pattern occurs. In this case, the application of (7.1) and (7.2)
makes no sense, instead, these equations must be replaced by a theoretical
apparatus that is based on the superposition of electric fields (including their
phases), and not of light intensities.

Having defined the ‘thick’ slab by condition (7.10), we turn to the defini-
tion of a ‘thin’ film. In connection with optics, a system like shown in Fig. 7.1
is regarded as a thin film in the case, that practically all multiple internal
reflections overlap coherently. In other words, the film thickness (for normal
incidence) must be much smaller than the coherence length. So we come to
the condition (7.11):

d � λ2

2πn∆λ
or ∆λ � λ2

2πnd
(7.11)

Condition (7.11) defines the thin film. To avoid confusion with the slab, the
film thickness is given by the d without any subscript.

There is an intermediate case where the thickness is smaller but of the
order of the coherence length, that corresponds to the interference of partially
coherent light. This case is difficult to handle mathematically and will not
be considered in this book. You should nevertheless note, that the oscillating
spectra in Fig. 7.2 correspond to this partly coherent superposition of light.

Returning to our example and regarding an intermediate spectral band-
width of 2 nm, from condition (7.11) we find that d � 100 µm must be fulfilled
in order to regard the sample from Fig. 7.1 as an optical thin film. Note that
(7.11) depends on the wavelength, so that in the UV the thickness (or the
spectral bandwidth) must be considerably smaller.

7.3 Spectra of Thin Films

Having defined what is meant by the terminus ‘thin film’, we may now turn
to the calculation of transmittance and reflectance of a thin film embedded
between two media. First of all, let us remark that condition (7.11) in prac-
tice often defines a thickness less than a few micrometers. In this case, the
mechanical stability of the system cannot be guaranteed, so that the film
is deposited onto another solid material, which forms the substrate. Corre-
spondingly, the first (incidence) and third (substrate) materials are usually
different from each other, hence they may have different refractive indices.
Such a system is given in Fig. 7.3.

The calculation of transmittance and reflectance of the system follows, in
principle, the philosophy from Sect. 7.1. Instead of the intensity transmission
and reflection coefficients Tijand Rij ((6.18) and (6.19)), we now have to deal
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Fig. 7.3. Calculation of thin film transmittance and reflectance

with Fresnel’s transmission- and reflection coefficients tij and rij , as given by
(6.14)–(6.17). In general, these coefficients are complex and therefore carry
an information on both amplitude and phase. Moreover, when the light trav-
els through the layer, it gets a gain in phase. Let 2δ be the (possibly complex)
phase gain per loop in the layer. In correspondence to our previous deriva-
tion, we obtain the following expressions for the electric field transmission
coefficient t123 and the corresponding reflection coefficient r123:

r123 = r12 + t12 eiδr23 eiδ t21 + t12 eiδr23 eiδr21 eiδr23 eiδ t21 + . . .

= r12 + t12 r23 t21 e2iδ (1 + r21 r23 e2iδ + . . .
)

(7.12)

= r12 +
t12 r23 t21 e2iδ

1 − r21 r23 e2iδ

t123 = t12 eiδ t23

[
1 + r21 r23 e2iδ +

(
r21 r23 e2iδ)2 + . . .

]
(7.13)

=
t12 t23 eiδ

1 − r21 r23 e2iδ

Let us shortly explain the abbreviations.
In full correspondence to Sect. 6.2, r123 denotes the ratio of the electric

field strength in the reflected and incident waves of the system from Fig. 7.3,
valid at the surface of the film. Analogously, t123is the ratio of the transmitted
field strength in medium 3 (at the film-substrate interface) and the incident
one. t12, t23, r12, and r23are the typical interface Fresnel’s coefficient between
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Fig. 7.4. Calculation of the phase gain for a single loop in the film

the media numbered in the subscripts. Per film penetration, the wavefunction
(2.12) is multiplied with the factor exp(iδ).

From (6.14)–(6.17), we have:

t12t21 = 1 − r2
12

so that (7.12) may be written as:

r123 =
r12 + r23 e2iδ

1 − r21 r23 e2iδ (7.14)

Up to now, we cannot really work with these equations, because we have no
valid expression for the phase gain. The latter may be obtained from geo-
metrical considerations (Fig. 7.4). Let us restrict to the case n1 = 1. In order
to use geometrical considerations, we derive the expression for δ assuming
the damping-free case (real film refractive index). The generalization to lossy
film materials is then accomplished replacing the real film index in the final
formula by the complex one. Using the symbols introduced in Fig. 7.4, we get:

2δ =
2π

λ
(n2a − x) = 2πν (n2a − x) → δ = πν (n2a − x) ;

a =
2d

cos ψ
; x = L sin ϕ with L = 2d tan ψ

→ δ = πν

(
2n2d

cos ψ
− 2d

cos ψ
sin ψ sin ϕ

)
(7.15)

with sin ψ =
sin ϕ

n2
and n2 cos ψ = n2

√
1 − sin2 ψ

→ δ = 2πνd

√
n2

2 − sin2 ϕ

For a complex film refractive index, δ becomes complex as well, and then the
phase factor exp(iδ) describes damping of the light wave in the film.

The couple of (7.13)–(7.15) allows to calculate the transmittance and
reflectance of the film from figure (7.3) by using:
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T =
Re (n̂3 cos ϕ3)
Re (n̂1 cos ϕ)

|t123|2 ; R = |r123|2 (7.16)

Equation (7.16) are a natural generalization of (6.18) and (6.19) to the single
film case. As we work with homogeneous materials and flat surfaces, scatter
does not occur, and the absorptance becomes:

A = 1 − T − R

We are already familiar with a result of reflectance calculations based on
(7.16). Indeed, in Sect. 6.4.2, we presented a calculated reflectance curve
Rp(ϕ) (Fig. 6.10) of the thin film system shown in Fig. 6.9. This reflectance
has been calculated by means of (7.16), assuming glass as the incidence
medium, a silver film of 46.2 nm thickness, and air as the third medium.
It should be noted, however, that in this case, expression (7.15) must be
modified, because the refractive index of the incidence medium is no further
equal to 1. As already mentioned in Sect. 6.4.2, the calculation led to an ex-
cellent reproduction of the measured Rp(ϕ) dependence. On the other hand,
the absolute value of t123 represents the ratio between the electric field am-
plitudes in the third and first media (directly at the interfaces), and therefore
gives immediate access to the electric field enhancement in surface plasmon
spectroscopy.

7.4 Special Cases

7.4.1 Vanishing Damping

For the special case of vanishing damping (real Fresnel’s coefficients and real
δ), from (7.13)–(7.16) one obtains:

T =

n3 cos ϕ3

n1 cos ϕ
t212t

2
23

1 + r2
12r

2
23 + 2r12r23 cos 2δ

(7.17)

R =
r2
12 + r2

23 + 2r12r23 cos 2δ

1 + r2
12r

2
23 + 2r12r23 cos 2δ

(7.18)

It makes no sense to present illustrations of spectra calculated in terms of
equations (7.17) and (7.18), because the system is still very idealized. In fact,
the film is assumed to be deposited on a substrate, but the rear side of the
substrate is not taken into account in our equations so far. We call this a
thin film on a semi-infinite substrate. But the given equations are sufficient
to get an idea on the properties of the oscillatory behaviour (the so-called
interference pattern) that must be expected in thin film spectra. Clearly, as
δ is proportional to the wavenumber, a spectral scan of the transmittance
or reflectance must show oscillations in intensity due to the cosines present
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in (7.17) and (7.18). We are already familiar with such oscillations, they ap-
peared in the spectra shown in Fig. 7.2. Because in the absence of losses, T
and R always sum up to one, it should be clear that minima in the transmit-
tance must correspond to maxima in the reflectance and vice versa.

The practically important point is, that one may deduce the film thick-
ness from the interference pattern. Let us focus on the extremal values of
the interference pattern of a thin film. According to our equations, extrema
will occur when the cosines achieve their extremal values (weak dispersion
presumed). Hence, the argument of the cosines must be multiples of π. Let j
be the order of the given extremum. In terms of (7.15), we have:

2δ = 4πνd

√
n2

2 − sin2 ϕ = jπ ; j = 0, 1, 2, . . .

Then, the extrema in transmittance and reflectance (we will call them simply
interference extrema in the following) occur at the wavenumbers νj :

νj =
j

4d
√

n2
2 − sin2 ϕ

(7.19)

In principle, from a spectrum like that shown in Fig. 7.2, the film thickness
may be deduced by means of (7.19) when the film refractive index and the
interference order j are known. It may however happen that the absolute
order of the extremum is not known exactly. In this case, it makes no sense
to apply (7.19) for the determination of the thickness. Instead, it makes sense
to regard two extrema, for example adjacent extrema of the orders j and j+1.
We then obtain:

d =
1

4 (νj+1 − νj)
√

n2
2 − sin2 ϕ

(7.20)

The wavenumbers νj and νj+1 may be obtained from the spectrum. Then,
the thickness of the film may be calculated from the measured spectrum. If
the interference extrema are not adjacent, we have:

d =
∆j

4 (νj+∆j − νj)
√

n2
2 − sin2 ϕ

(7.20a)

Let us regard the case of Fig. 7.2 (a glass slab at normal incidence (ϕ = 0)). In
order to calculate the thickness of the glass slab, we apply (7.20a) and choose
the interference extrema located at 7580 cm−1 (νj) and 7682 cm−1 (νj+∆j).
Obviously, ∆j = 8, as may be simply obtained by counting the transmittance
extrema in Fig. 7.2. The application of (7.20a) presumes knowledge of the
refractive index, which has been estimated to be around 1.49 (Sect. 7.2). So
we may calculate the thickness according to (7.20a) and obtain a value of
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d =
8

4 (7682 − 7588)
√

1, 492
cm = 0, 01428 cm = 142.8 µm

which is quite close to the value of 142 µm that has been obtained by means
of a micrometer. Hence, our theory of thin film spectra seems to be consistent
with the experimental observations.

Finally, let us remark that (7.19) predicts equidistant (at the wavenumber
scale) interference extrema as long as the refractive index may be regarded
to be free of dispersion. If, however, dispersion is remarkable (n = n(ν)),
the extrema are no more equidistant, for normal dispersion their distance
becomes smaller with increasing wavenumber. (7.20) or (7.20a) must then
consider different refractive indices at different interference extrema, so that
from (7.19) we find:

d =
∆j

4 [νj+∆j

√
n2

2 (νj+∆j) − sin2 ϕ − νj

√
n2

2 (νj) − sin2 ϕ]
(7.20b)

As in practice the refractive index dispersion is often not exactly known,
equations like (7.19) or (7.20b) will rather be used to estimate the refractive
index dispersion when the thickness d has been previously determined by
other means.

7.4.2 λ/2-Layers

Let us now turn to a very special case of a non-absorbing layer, namely the
λ/2-layer (halfwave-layer). This terminus is applied to a non-absorbing layer,

when the optical film thickness d
√

n2
2 − sin2 ϕ is equal to λ/2. In this case,

the term 4πνd
√

n2
2 − sin2 ϕ equals 2π. Therefore, the cosines in (7.17) and

(7.18) become 1.
Let us for simplicity regard the case of normal incidence. The transmit-

tance (7.17) becomes

T =
n3

n1
× t212t

2
23

(1 + r12r23)
2

Substituting the Fresnel coefficients by (6.14) and (6.15), we quickly find

T =
4n1n3

(n1 + n3)
2

For a λ/2-layer, the transmittance (and the reflectance) do not depend on
the refractive index of the film n2! Moreover, our result is identical to (7.4),
the transmittance of the air-substrate interface. In other words, such a layer
has no effect on the transmittance and reflectance of the system. This result

is also true for oblique incidence, as long as 4πνd
√

n2
2 − sin2 ϕ equals 2π.
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It is immediately clear that a given film acts as a λ/2-layer only at certain
wavelength values. The latter are determined by the condition

2δ = 4πνd

√
n2

2 − sin2 ϕ = jπ ; j = 0, 2, 4, 6, . . .

where the mentioned cosines become 1.

7.4.3 λ/4-Layers

We deal with a quarterwave-layer (λ/4-layer), when

2δ = 4πνd

√
n2

2 − sin2 ϕ = π

is fulfilled. In this case, the optical thickness d
√

n2
2 − sin2 ϕ = λ/4. Cor-

respondingly, the cosines in (7.17) and (7.18) become −1. Regarding again
normal incidence, we obtain for the transmittance:

T =
n3

n1
· t212t

2
23

(1 − r12r23)
2 =

4n1n
2
2n3

(n1n3 + n2
2)

2 (7.21)

This equation embodies an utmost important special case. Let us assume,
that the refractive index of the film is in between those of the incident medium
and the substrate, while

n2 =
√

n1n3

is fulfilled. Then, the transmittance (7.21) becomes 1, and consequently, the
reflectance of the system becomes zero. Therefore, such quarterwave layers
may lead to an antireflection effect and are therefore quite important in
optical thin film design.

On the other hand, let us regard that the film refractive index is rather
high (n2 > n1, n3). Then, from (7.21) one obtains:

∂R

∂n2
= − ∂T

∂n2
=

8n1n2n3

(n1n3 + n2
2)

3

(
n2

2 − n1n3
)

> 0

With an increasing film refractive index, the reflectance of a high refractive
index quarterwave layer increases as well. Therefore, such quarterwave layers
may be used for reflection enhancement purposes.

The same is valid for all interference extrema, where the condition

2δ = 4πνd

√
n2

2 − sin2 ϕ = jπ ; j = 1, 3, 5, 7, . . .

is fulfilled.
The mentioned properties of the extrema of the interference pattern of a

thin film are sufficient to discuss the general behaviour of the transmittance
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Fig. 7.5. Measured thin film spectra of a TiO2 film

and reflectance of a damping-free single film on a substrate. Indeed, in all
the extrema of the interference pattern as defined by (7.19), the film behaves
either as a halfwave or as a quarterwave layer. In the halfwave points, the
transmittance and the reflectance of the film-on-substrate system are identical
to the values for the uncoated substrate. Therefore, the halfwave points may
be easily identified in an experimental spectrum.

The remaining extrema of the interference pattern have to be regarded
as quarterwave points. The transmittance in the quarterwave points is de-
termined by (7.21), and it will depend on the relation between the refractive
indices whether (7.21) defines minima or maxima of the transmittance T .
Due to the lack of damping, the reflectance R = 1 − T .

Let us discuss the behaviour of the transmittance in the quarterwave
points, restricting on the case that n1 < n3. For n2 = n1 and n2 = n3, (7.21)
yields a transmittance identical to the bare ambient-substrate interface. For
n1 < n2 <

√
n1n3, the derivative of the transmittance with respect to the

film refractive index is positive. Therefore, in this case the transmittance in
the quarterwave points exceeds that of the bare substrate. The transmittance
achieves its maximum value 1 for n2 =

√
n1n3. The derivative becomes nega-

tive for n2 >
√

n1n3. But the transmittance must be still higher than that of
the substrate, as long as n2 < n3. A further increase in the film refractive in-
dex leads to a transmittance that is lower than that of the bare substrate, so
that the quarterwave points will correspond to minima in the transmittance.

Let us look at an example. Figure 7.5 shows the normal incidence trans-
mittance T and the reflectance R of a 337 nm thick titanium dioxide film
on a quartz glass substrate. The figure also shows the transmittance Ts and
reflectance Rs of the bare substrate.

We see the expected oscillatory behaviour of the spectra. For wavenum-
bers below 25000 cm−1, the film transmittance and reflectance sum up to 1
(no damping), so that our previous discussion is applicable. In the halfwave
points, the film spectra are tangential to the substrate spectra, so that the
halfwave points may be easily identified. In the quarterwave points, the mea-
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sured reflectance is higher than that of the substrate, so that the film refrac-
tive index must be higher than the substrate index. Obviously, the refrac-
tive index shows normal dispersion, because the reflectance maxima become
higher in reflection values with increasing wavenumber, and are not equidis-
tant on the wavenumber scale.

In fact, our knowledge is even sufficient to perform a simple reverse search
procedure. When neglecting the rear substrate surface, from (7.21) the film
refractive index may be deduced in the quarterwave points. Then, we may
find the film thickness from (7.20b).

7.4.4 Free-Standing Films

Let us now turn to another special case, where the thin film is not embedded
on a substrate, but surrounded by air from both sides. Hence, materials 1
and 3 are identical, and our equations for the electric field transmission and
reflection coefficients (7.13) and (7.14) become:

t123 =
t12t21eiδ

1 + r12r21e2iδ

r123 =
r12 + r21e2iδ

1 + r12r21e2iδ

Let us now assume, that the film’s refractive index is complex. Then, the
phase gain will be complex as well and may be written as:

δ = δ′ + iδ′′

From that, we find for the transmittance (7.16):

T =
|t12|2|t21|2e−2δ′′

1 + |r12|2|r21|2e−4δ′′ + 2e−2δ′′ [Re (r12r21) cos 2δ′ − Im (r12r21) sin 2δ′]
(7.22)

Let us again check the output of this equation for d → 0. Then, the sinus-
terms become zero, while the cosines become 1. It is obtained:

T (d → 0) =
|t12|2|t21|2

1 + |r12|2|r21|2 + 2Re (r12r21)
= 1,

because |t12t21|2 =
∣∣1 − r2

12

∣∣2 and

∣∣1 − r2
12

∣∣2 =
∣∣1 − Rer2

12 − iImr2
12

∣∣2 =
(
1 − Rer2

12
)2

+
(
Imr2

12
)2

= 1 − 2Rer2
12 +

(
Rer2

12
)2

+
(
Imr2

12
)2

= 1 − 2Rer2
12 +

∣∣r2
12

∣∣2
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So that our thin-film equations predict a 100% transmittance and a vanishing
reflectance for an infinitively thin film, which is a quite reasonable result.

Having checked this asymptotic behaviour, we will now utilize (7.22) to
obtain an expression for the transmittance of a thick slab. This makes sense,
because we have no expression for the transmittance of an absorbing thick
slab at oblique incidence so far. On the other hand, in (7.22) both absorption
and oblique incidence are automatically considered, and the corresponding
equations for the thick slab might be obtained transferring (7.22) to the case
of incoherent light superposition.

That may be achieved averaging (7.22) over the real part of the phase
gain. In doing so, we simulate a measurement where the phase information is
destroyed caused by a statistical distribution of the phases of the interfering
light waves. That leads us to the transmittance of a thick slab Ts according to:

Ts =
1
π

π∫
0

dδ′ ×
{

|t12|2|t21|2e−2δ′′

1+|r12|2|r21|2e−4δ′′ +2e−2δ′′[Re (r12r21) cos 2δ′−Im (r12r21) sin 2δ′]
}

=
|t12|2|t21|2e−4πνdSIm

√
n̂2

2−sin2 ϕ

1 − |r12|2|r21|2e−8πνdSIm
√

n̂2
2−sin2 ϕ

(7.23)

The integral has been solved according to:

∫
dx

a + b cos x + c sin x
|a2>b2+c2 =

2√
a2 − b2 − c2

arctan

⎡
⎣ (a − b) tan

x

2
+ c

√
a2 − b2 − c2

⎤
⎦

Equation (7.23) is identical by structure with (7.9). The corresponding equa-
tion for the reflectance may be obtained in the same way, let us write out the
result:

Rs = |r12|2 +
|t12|2|r21|2|t21|2e−8πνdSIm

√
n̂2

2−sin2 ϕ

1 − |r12|2|r21|2e−8πνdSIm
√

n̂2
2−sin2 ϕ

(7.24)

The couple of equations (7.23) and (7.24) is our final result for the description
of transmittance and reflectance of a thick slab. These equations are utmost
important in thin film spectroscopy, because such thick slabs usually serve
as a substrate for the thin films that have further to be investigated. Clearly,
without knowledge on the behaviour of the bare substrate, we would not be
able to correctly describe the properties of the film-on-substrate system.

7.4.5 A Single Thin Film on a Thick Substrate

We are now able to perform the final step that will enable us to calculate
transmittance and reflectance of a thin film on a thick substrate.
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Fig. 7.6. A thin film on a substrate

First of all, let us take a closer look on the sample which will be regarded
now. As shown in Fig. 7.6, we are now dealing with a realistic system in thin
film spectroscopy, namely a film on a thick substrate with a finite thickness.
In the following, all substrate parameters are indicated by the subscript ‘s’.

In order to apply our theoretical description to the system, the film and
substrate thickness values shall be in the correct relation to the coherence
length of the light. We shall require, that within the film, the light waves su-
perimpose coherently, while they superimpose incoherently in the substrate.
In terms of the conditions (7.10) and (7.11), that yields:

d � λ2

2πn∆λ
∧ λ2

2πns∆λ
< dS

For simplicity, we will assume that the surrounding medium is air (n1 = n4 =
1), while the refractive indices of the film and the substrate may be complex
(for symbols see Fig. 7.6). We start our discussion from (7.23) and (7.24).
These equations describe the properties of the bare substrate, the only thing
that has to be done is to ‘add’ the film onto the substrate. That may be done
in the following manner:

In (7.23), the term t12 in the nominator gives us the ratio between the
electric field amplitudes at both sides of the air-substrate interface. This
field transmission coefficient simply has to be replaced by the corresponding
thin-film coefficient t123. Moreover, we have to remember that the substrate
material is now identical to the third material, so that instead of t21, we have
to write t31. The same type of procedure must be applied to the denomina-
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tor. Its function is to describe the multiple internal reflections between the
substrate surfaces. So one of the Fresnel coefficients (r12 = −r21) has to be
replaced by the thin film field reflection coefficient r321, the other one by r31.
An equivalent procedure has to be applied to the reflectance according to
(7.24). As the result, in the terminology introduced in Fig. 7.6, we obtain the
following equations for T and R:

T =
|t123|2|t31|2e(−2Im(δS))

1 − |r321|2|r31|2e(−4Im(δS))
(7.25)

R = |r123|2 +
|t123|2|r31|2|t321|2e(−4Im(δS))

1 − |r321|2|r31|2e(−4Im(δS))
(7.26)

t123 =
t12t23eiδ

1 + r12r23e2iδ

r123 =
r12 + r23e2iδ

1 + r12r23e2iδ

δ(S) = 2πνd(S)

√
n̂2

(S) − sin2 ϕ

This couple of equations allows us to calculate T and R for a film-on substrate
system. In other words, we are now able to perform the forward search task.

Let us have a look at some examples of calculations performed within
the framework of the theoretical apparatus derived so far. The first example
concerns the titanium dioxide film presented in Fig. 7.5. In this figure, the
single symbols correspond to measured values, while the solid lines correspond
to a theoretical spectrum calculated by means of (7.25) and (7.26). In order to
achieve such a good agreement between measurement and theory, the optical
thin film constants and the thickness have been varied to achieve a good
fit of the experimental behaviour. In the present case, this has been done
assuming a multioscillator model to describe the optical constants of TiO2.
The corresponding optical constants are shown in Figs. 7.7 and 7.8.

Hence, our theoretical apparatus is able to reproduce the experimental
spectra of thin films on a substrate, as long as the optical constants of the
film are correctly chosen. That means, that such a spectra fit may also be
used to perform a reverse search task. In fact, this is the method that has
been applied to obtain the optical constants shown in the Figs. 7.7 and 7.8.
Mathematically, this may be done minimizing the error function:

F =
M∑

j=1

{
wT (νj) [Texp (νj) − Tcalc (νj)]

2 + wR (νj) [Rexp (νj) − Rcalc (νj)]
2
}

(7.27)

Here, the subscript ‘exp’ denotes measured values, while ‘calc’ corresponds to
calculations according to (7.25) or (7.26). The w-functions represent the rela-
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Fig. 7.7. Refractive index of TiO2, as consistent with the spectra from Fig. 7.5

Fig. 7.8. Absorption coefficient of TiO2, as consistent with the spectra from
Fig. 7.5. (The values E03 and E04 indicate the photon energies, where the absorption
coefficient reaches the values of 1000 cm−1 and 10000 cm−1, correspondingly.)

tive weight of the single error terms, it makes sense to choose them inversely
proportional to the square of the measurement error. M is the number of
wavenumber points considered in the calculation. However, an error function
like (7.27) usually has a lot of local minima, so that any mathematical mini-
mization procedure leads to a multiplicity of solutions. From that multiplicity,
the physically correct solution must be identified with utmost care.

Let us finally look at another example. Figure 7.9 shows the normal in-
cidence T - and R-spectra of a 157 nm thick indium tin oxide (ITO) film on
glass. ITO is a material that combines transpareny in the VIS with a high
electrical dc conductivity. Hence, one must expect that in the VIS, we have
refractive indices above 1 and low absorption coefficients. On the other hand,
the free electrons that are responsible for the dc conductivity should lead to
IR-optical constants according to Drude’s formula. Again, the spectra from
Fig. 7.9 have been fitted by means of (7.25) and (7.26), and the corresponding
optical constants (Fig. 7.10) confirm the expected behaviour.
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Fig. 7.9. T and R for an ITO film

Fig. 7.10. Optical constants of ITO, consistent with the spectra from Fig. 7.9

7.4.6 Extended Detail: A Few More Words
on Reverse Search Procedures

Let us make a very few additional remarks on the reverse search procedures
applied to a system like shown in Fig. 7.6. As already mentioned, in the
reverse search, the task is to recalculate the optical constants of the film and
the film thickness from measured transmittance and reflectance data.

As shown in the previous sections, it is possible to provide explicit expres-
sions for the spectra of a thin film sample if geometry and optical constants
are known. It is however impossible to obtain explicit expressions for the op-
tical constants as a function of the measured data. This makes the numerical
side of the reverse search more complicated than the forward search, because
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it is necessary to apply involved iteration procedures to find the result. As a
further complication, unambiguity and numerical stability of the result may
not be guaranteed.

From the formal point of view, the reverse search procedures may be clas-
sified into single wavelength methods and multiwavelength methods. The lat-
ter include the Kramers–Kronig-methods as well as curve-fitting techniques.
Often, the reverse search bases on the numerical minimization of an appro-
priately defined error function F , as given by (7.27).

The numerical minimization of (7.27) represents a purely mathematical
problem, and the corresponding skills will not be discussed here. In the ideal
case, a set of optical constants may be found which generates theoretical
spectra equal to those measured, so that F becomes zero. In practice this
is impossible, and it makes no sense to minimize the error function (7.27)
below a threshold value determined by the measurement accuracies ∆T and
∆R. Thus, we may regard that the minimization was successful when the
condition:

F <
M∑

j=1

{
wT (νj)

[
∆T (νj)

]2 + wR (νj)
[
∆R (νj)

]2}

is fulfilled. As several sets of optical constants may fulfill this criterion, we
may obtain a multiplicity of mathematically acceptable solutions, from which
the physically meaningful has to be selected. Especially in thin film optics,
the discussion of the solution multiplicity may be a troublesome procedure.

If one has no idea on the mutual correlation of the optical constants at dif-
ferent frequencies, one may straightforwardly apply the minimum condition
of (7.27):

grad F = 0

which reduces to a set of M equation systems:

[Texp (νj) − Tcalc (νj)] = 0

[Rexp (νj) − Rcalc (νj)] = 0

in the case that no analytical dependence of the optical constants at different
frequencies is assumed. These systems of equations may be solved numerically
at each wavenumber of interest, which would be a typical single wavelength
procedure. When the film thickness is known, we have two equations for
two unknown values n and K for each wavenumber. As a disadvantage, this
method often suffers from a multiplicity of solutions, which may be discon-
tinuous with wavenumber.

There exist several methods to reduce the solutions multiplicity. First of
all, a sufficient number of independent measurements or their clever choice
may reduce the solutions multipicity, however, it demands the access to the
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Table 7.2. A priori information obtained from thin film spectra at normal inci-
dence, transparent substrat, ambient medium air

T + R T (λ/2) T (λ/4) Further information Interpretation

1

Ts > Ts – n < ns

Ts < Ts – n > ns

< Ts
< Ts – Positive index gradient,

〈n〉 > ns

> Ts – Positive index gradient,
〈n〉 < ns

> Ts
< Ts – Negative index gradient,

〈n〉 > ns

> Ts – Negative index gradient,
〈n〉 < ns

< 1 – – – A + S > 0

� 1 – – homogeneous layer with
S = 0

A ≈ 1; d 	 λ

8π

1 − √
R√

R

� 1 – – homogeneous layer with

d ≤ λ

8π

1 − √
R√

R

S > 0

corresponding measurement equipment. However, it is often impossible to
increase the number of measurements because of a lack of equipment. One
further way to reduce a possible solution multiplicity is given by the appli-
cation of curve fitting procedures. In this case, one postulates an analytical
dispersion law such as defined in the Chaps. 2–5. In minimizing (7.27), the
free parameters (for example resonance frequencies of linewidth values) of the
dispersion model have to be determined. Typically, the film thickness may
also be found this way.

The curve fitting procedures are widely applied today, however, their suc-
cessfull application demands the reliable choice of a suitable dispersion law.
One of their advantages is that they may find application in quite restricted
spectral regions.

No matter whether one prefers to work with single wavelength methods
or with curve fitting approaches, there are a few general rules that are helpful
in performing the reverse search. First of all, the solution should satisfy at
least two criterions:

– It should be continuous with wavenumber.
– The dispersion should be consistent with the Kramers–Kronig-relations.

In sophisticated curve fitting procedures, these criterions are automatically
fulfilled. For single wavelength methods, however, they may be a criterion to
exclude physically meaningless solutions.

Additionally, it makes sense to utilize the information supplied from gen-
eral properties of the measured spectrum. For the special case of a single film
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Fig. 7.11. Transmittance and reflectance of a gradient index layer

on a transparent substrate, surrounded by air, important a priori information
may be obtained from the spectrum without any troublesome calculations.
Table 7.2 summarizes important special cases.

Let us shortly comment on the information given in the table.

– In the upper part of the table (T +R = 1), we deal with loss-free samples
which show an interference pattern. T (λ/2) denotes the transmittance in
halfwave points, and T (λ/4) in quarterwave points. As already discussed,
the behaviour in quarterwave points determines whether or not the film
has a higher refractive index as the substrate. Moreover, in the absence of
losses, T (λ/4) as given by (7.25) does not depend on the film thickness. It
may therefore be used to calculate the film refractive index assuming K =
0. Afterwards, one may calculate the film thickness from (7.19)–(7.20b).

– When the sample is free of optical losses, but the transmittance in the
halfwave points differs from that of the substrate, then we have to accept
that we deal with a gradient layer. That means, that the film refractive
index changes smoothly with the distance from the substrate. When the
film index increases with increasing distance from the substrate, we speak
on a positive refractive index gradient. On the contrary, the gradient is
negative when it decreases with increasing distance from the substrate.
The behaviour in the halfwave points is thus helpful to identify the kind
of index gradient. 〈n〉 denotes the average refractive index (averaged over
the film thickness). The mentioned rules correspond to the special case of
a linear refractive index gradient.
To provide an example, Fig. 7.11 shows the spectra of a gradient index
layer, prepared from a material mixture of silicon dioxide (n ≈ 1.45) and
niobium pentoxide (n ≈ 2.3) on quartz glass (n ≈ 1.45). Nearby the
substrate, the niobium pentoxide concentration is high, while it becomes
smaller with increasing distance from the substrate. Hence, we deal with a
negative index gradient, so that in the halfwave points, the transmittance
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exceeds that of the bare substrate. However, as the average film index is
higher than that of the substrate, in the quarterwave points we have a
sample transmittance lower than the substrate transmittance. This is one
of the situations analysed in Table 7.2. Such spectra cannot be calculated
by the theory developed in this Chap. 7, but becomes accessible to the
reader which is familiar with the material from the following Chap. 8.
The three rows on the bottom of the table correspond to lossy samples.
In this case, the interference pattern may disappear. Nevertheless, for the
case of strong damping, asymptotic equations may be derived from (7.25)
and (7.26). Some of these results are given in the table without derivation.

The a priori information obtained from general spectral features may, of
course, be used to identify the physically meaningful solution of a reverse
search procedure. Moreover, it may be utilized at the very beginning to de-
termine a suitable initial approximation, that makes the minimization of
(7.27) more efficient and faster.



8 Extended Details: Gradient Index Films
and Multilayers

8.1 Gradient Index Films

8.1.1 General Assumptions

In the previous chapter, we derived the expressions for transmittance and
reflectance of a single homogeneous thin film on a thick substrate. As one of
the general assumptions, the refractive index of the film should not depend
on the coordinates, so that n �= n(x, y, z). This is a rather special case, which
may be regarded as a model to simplify the calculation of thin film spectra.
In practice, any real optical thin film is (at least slightly) inhomogeneous.
In this chapter we will deal with the utmost important special case, that
the refractive index depends only on the z-coordinate (a so-called stratified
medium). That means, that the film properties change with distance from
the substrate. This may be caused, for example, by changes in the deposition
conditions during the preparation of a thin film.

In order to describe the optical behaviour of such an inhomogeneous film,
we have to solve Maxwell’s equations with a z-dependent dielectric function.

First of all, let us remember that we exclusively deal with harmonic elec-
tric and magnetic fields. We shall write the electric and magnetic fields in
the following manner:

E = E0 (r) e−iωt ; H = H0 (r) e−iωt

For non-magnetic materials we have:

ε = ε (z) ; µ = 1

As in the chapter on Fresnel’s equations, it makes sense to discuss the par-
ticular cases of s- and p-polarization separately.

Before starting with any derivations, let us state that this Chap. 8 will
be somewhat specific from both its content and the meaning of the symbols
used here. We emphasize at the very beginning, that the full chapter will deal
with rather complicated and sometimes tedious mathematical derivations. It
is the authors personal opinion that it is worth to understand the derivation
of the equations suitable for the calculation of complicated thin film systems
before applying them. Therefore the derivations are included into this book.
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Nevertheless, if the reader is only interested in the final “recipe” for calcula-
tions, the relevant information will be found in the Tables 8.1 and 8.2, which
comprise the main results of the derivations.

Concerning the symbols, there will be an important difference to the
meaning of the Fresnel-coefficients used so far. Up to now, any field transmis-
sion or reflection coefficient tij , rij , tijk, and rijk had the meaning of the ratio
between electric fields. In this chapter, this will be true only for the case of
s-polarization. For p-polarization, any field transmission or reflection coeffi-
cient will have the meaning of the ratio between the corresponding magnetic
fields. Particularly, the Fresnel-formula for tp ((6.15)) will not be applica-
ble in connection with the expressions derived in this chapter and must be
replaced by the relevant expression for the magnetic fields (see Sect. 8.1.4).

8.1.2 s-Polarization

Let us start with the case of s-polarization. Assuming a coordinate system
like introduced in Fig. 6.3, we have the field components:

E =

⎛
⎝ 0

Ey

0

⎞
⎠

From (2.1, term 2.), we get the couple of equations (8.1) (compare with the
calculations in Sect. 6.2)

iωµ0Hx = − ∂

∂z
Ey

iωµ0Hy = 0 (8.1)

iωµ0Hz =
∂

∂x
Ey

Hence, for ω �= 0, we have:

H =

⎛
⎝Hx

0
Hz

⎞
⎠

So that, from (2.1, term 4.), it follows that

∂

∂z
Hx − ∂

∂x
Hz = −iωεε0Ey

(8.2)
∂

∂y
Hz =

∂

∂y
Hx = 0

Differentiating the first and third equations in (8.1) for the second time with
respect to coordinates and summing them up, we obtain the wave equation:
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∂2

∂x2 Ey +
∂2

∂z2 Ey = −ω2

c2 ε (z) Ey (8.3)

Here, the derivatives of the magnetic field have been substituted by means
of (8.2). Equation (8.3) allows a separation of variables according to:

Ey(x, z) = X (x) U (z) (8.4)

That results in:

1
X

d2X

dx2 = − 1
U

d2U

dz2 − ω2

c2 ε (z) = const. (8.5)

For convenience, we rewrite the constant according to:

const. = −k2
0η

2 ; k0 ≡ ω

c
(8.6)

From (8.5), it is immediately obtained that

X ∝ eik0ηx (8.7)

Therefore, according to (8.4) the full electric field may be written as

Ey = U (z) eik0ηx (8.8)

Then, according to (8.1), we assume for the magnetic field:

Hx = −V (z) eik0ηx

(8.9)
Hz = −W (z) eik0ηx

Finally, from (8.1) and (8.2), we obtain the following system of equations for
the field amplitudes:

dU

dz
= iωµ0V

dV

dz
= iωε0

(
ε − η2)U (8.10)

µ0W +
η

c
U = 0

The system of (8.10) allows us to calculate the field amplitudes at any point of
the medium. Hence, it will give access to the calculation of transmittance and
reflectance. As we are only interested in the intensities transmitted through
or reflected from the surfaces, we will finally only need to calculate the z-
component of Poynting’s vector. Therefore, it will be sufficient for us to cal-
culate the horizontal components of the fields, so that from (8.10) we will
have to regard only the first two equations.
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Let us finally write out the particular wave equations for U and V . Dif-
ferentiating the first two equations in (8.10) with respect to the coordinates,
we obtain:

d2U

dz2 +
ω2

c2 (ε (z) − η2)U = 0
(8.11)

d2V

dz2 − 1
(ε (z) − η2)

dε

dz

dV

dz
+

ω2

c2 (ε (z) − η2)V = 0

We will have to return to (8.11) later when deriving the utmost important ma-
trix method for calculating T and R for multilayer stacks. But before doing so,
let us see how the corresponding equations for the p-polarization will look like.

8.1.3 p-Polarization

The calculations for p-polarization are similar to those for s-polarization. In
the p-polarized case, we have:

E =

⎛
⎝Ex

0
Ez

⎞
⎠ ; H =

⎛
⎝ 0

Hy

0

⎞
⎠

We will not repeat the full calculation, but only mention the main differences
and the final results. The main difference is, that it is convenient to inter-
change the roles of E and H when comparing with the s-case. So that instead
of (8.4), we assume:

Hy(x, z) = X (x) U (z)

Instead of (8.8) and (8.9), we now find:

Hy = U (z) eik0ηx

Ex = V (z) eik0ηx

Ez = W (z) eik0ηx

That results in the system of equations:

dU

dz
= iωεε0V

(8.12)
dV

dz
= iωµ0

(
1 − η2

ε

)
U

The corresponding wave equations are:

d2U

dz2 − 1
ε

dε

dz

dU

dz
+

ω2

c2 (ε (z) − η2)U = 0
(8.13)

d2V

dz2 − η2

ε (z) (ε (z) − η2)
dε

dz

dV

dz
+

ω2

c2 (ε (z) − η2)V = 0
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8.1.4 Calculation of Transmittance and Reflectance

Let us now come to the calculation of transmittance and reflectance of a strat-
ified medium, which is deposited on a substrate. We start with some formal
transformations of the equations derived so far. First of all, let us determine
the physical sense of the value η. From (8.7) or (8.8), it becomes clear that
the product ηk0 must be equal to the x-component of the wavevector k. We
therefore have:

kx =
ω

c
n sin ψ =

ω

c
η ⇒ η = n sin ψ

where ψ is the propagation angle in the stratified medium. Both ψ and n are
now dependent on the z-coordinate. The condition (8.6) has the meaning of:

n sin ψ = const.

and is therefore a generalization of Snell’s law of refraction to a medium with
a continuously changing refractive index. When the incidence medium has
the refractive index 1, of course, η = sin ϕ, where ϕ is again the angle of
incidence.

We will now modify (8.10) and (8.12), in order to come to functions u
and v that have the same dimension, although they represent different kinds
of fields. For this purpose, we construct the following functions:

s-polarization: u = U ; v =
√

µ0

ε0
V (8.14)

p-polarization: u = U ; v =
√

ε0

µ0
V (8.15)

Then, instead of (8.10) and (8.12), we find the simplified equations:

s-polarization:
du

dz
= ik0v

(8.16)
dv

dz
= ik0

(
ε − η2)u

p-polarization:
du

dz
= ik0εv

(8.17)
dv

dz
= ik0

(
1 − η2

ε

)
u

The advantage to (8.10) and (8.12) is, that the functions u and v have iden-
tical dimension. Hence, in the mathematical treatment of (8.16) and (8.17),
we may regard these functions as dimensionless. Of course, the substitutions
(8.14) and (8.15) cause no changes in (8.11) and (8.13).
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Let us now come to the field transmission and reflection coefficients. In
the case of s-polarization, u corresponds to the electric field (in fact, its y-
component). The value V was connected to the x-component of the H-field.
This is the full H-field, multiplied with cosψ. From (6.9) and (8.14), we see
that

v =
√

µ0

ε0
V = ±n̂Ey cos ψ (8.18)

Let us assume the case of an incident medium with a refractive index n1. In
the incidence medium, the propagation angle ψ is identical to the incidence
angle ϕ. Similar to the discussion in Chap. 6, at the ambient-film interface,
we have:

u (z = 0) ≡ u0 = E(e) + E(r)

(8.19)
v (z = 0) ≡ v0 = n̂1 cos ϕ

(
E(e) − E(r)

)
The “–“ in the second equation reflects the fact, that the z-component of
the wavevector of the reflected wave has the opposite sign than that of the
impinging one. Therefore, from (8.18), the corresponding electric fields are
directed antiparallel. We now use the definitions:

t =
E(t)

E(e) ; r =
E(r)

E(e)

Let us regard the special case E(t) = 1. That does not change the values of t
and r. We then obtain from (8.19):

t =
2n̂1 cos ϕ

u0n̂1 cos ϕ + v0
; r =

u0n̂1 cos ϕ − v0

u0n̂1 cos ϕ + v0
(8.20)

The values of u0 and v0 correspond to u and v at the air/film interface.
Equations (8.20) are similar by structure to the Fresnel’s coefficients ob-

tained in Chap. 6. They allow to calculate the reflectance and transmittance
through an inhomogeneous film for the case of s-polarization. However, first
of all one has to solve the system of equations (8.16) or alternatively (8.11).
To do so, we still need knowledge about the boundary conditions at the
film/substrate boundary.

Let us for a moment assume that there is no rear substrate surface. The
values t and r as calculated by (8.20) are then a simple generalization of
the field transmission coefficients t123 and r123, as introduced in Chap. 7.
Consequently, in the substrate, we only have one transmitted wave with the
electrical field E(t) = 1. From there it follows, that at the film/substrate
boundary, we have:

u = 1
v = n̂s cos ϕs

where the second condition is again a consequence from (6.9) and (8.14), ϕs

is the propagation angle in the substrate.
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Finally, the transmittance and reflectance are calculated in the usual way,
namely by:

T =
Re (n̂s cos ϕs)
Re (n̂1 cos ϕ)

|t|2; R = |r|2

In order to account for the rear side of the substrate, we use equations (7.25)
and (7.26). The values t123 and r123 have to be replaced by t and r according
to equations (8.20). In order to account for t321 and r321, u and v have to
be recalculated assuming the substrate medium as the incident one, and the
outer space as the substrate. Then, t and r again follow from (8.20) when
replacing the former incidence parameters by the substrate ones.

This might seem to be a troublesome calculation, nevertheless it offers a
straightforward way to calculate the optical spectra of media with an arbi-
trary n(z)-dependence. Of course, as before, the index of refraction may be
complex and depend on the wavelength, so that the method is indeed very
general.

Before coming to the case of p-polarization, let us look at two examples,
which correspond to normal incidence, so that the polarization state is of no
significance.

1. Example

Let us return to the spectra shown in Fig. 7.11. This figure shows the T - and
R-spectra of a gradient index layer, deposited on fused silica. The interesting
point was, that in the case of a gradient index layer, the film’s transmittance
and reflectance values are not equal to those of the bare substrate in the
halfwave points. Up to now, we had no theory to verify this point. By means of
the theory derived in this chapter, such calculations should become accessible.

Figure 8.1 shows the result of a model calculation, where we assumed
a 300 nm thick film with a z-dependent refractive index. For simplicity,
both dispersion and absorption have been neglected. We regarded two cases,
namely a negative and a positive gradient, while the average dielectric func-
tion should be the same for both gradients. For this model calculation, the
following z-dependence of the dielectric function has been assumed:

positive gradient : ε(z) = 4.9 − 0.003 nm−1z

negative gradient : ε(z) = 4.0 + 0.003 nm−1z

The result is presented in Fig. 8.1.
We see, that in the halfwave points, the transmittance is either higher or

lower than the substrate transmittance, depending on the sign of the gradient.
This confirms the general rules formulated in Table 7.1. On the other hand,
the quarterwave points are completely insensitive to the film index gradient,
they only depend on the average index, which is the same for both gradient
layers.
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Fig. 8.1. Calculated spectra of 300 nm thick gradient index films on glass

2. Example

In the second example, we regard another case of an index gradient, namely
a refractive index which depends on z according to a sinus-function. Hence,
we have a periodical change in refractive index according to the law:

n̂ = n̂ (z) = 〈n̂〉 + ∆n̂ sin
(

4πz

Λz

)

Note that the value Λz is not the period, but twice the period of the refractive
index profile. 〈n̂〉 is the spatially averaged index of refraction, and ∆n̂ de-
termines the modulation depth. Thin film systems with a suchlike refractive
index profile are called rugate filters.

Practically, such a refractive index profile is difficult to be prepared. But
one may come close to such a profile when mixing two optical materials with a
sinusoidal filling factor p = p(z). Figure 8.2 displays the calculated T - and R-
spectra of a 1500 nm thick film on fused silica. In this calculation, we assumed
a nearly sinusoidal refractive index profile, obtained from (4.11) with

p = p (z) =
1 + sin

(
4πz
Λz

)
2

; Λz = 300 nm

with silicon dioxide SiO2 and niobium pentoxide Nb2O5 as mixing partners.
The material is thus assumed to be a mixture from a low- and a high refrac-
tive index material with a continuously varying filling factor. The spectra in
Fig. 8.2 show a well distinguished reflection peak centred at:
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Fig. 8.2. Calculated spectra of a thin film with a nearly sinusoidal refractive index
profile. The film thickness corresponds to 10 periods

λreject = 〈n〉Λz

Obviously, such systems may really find application as filters.
Let us now come to the case of p-polarization. In difference to s-polariza-

tion, the function u in (8.17) does now correspond to the magnetic field, while
v is connected to the electric field. Keeping this in mind, the calculations may
be carried out in an analogous way to the case of s-polarization.

Instead of (8.18), we now have:

v =
√

ε0

µ0
V = ±Hy

n̂
cos ψ

Correspondingly, at the ambient/film interface, we find the conditions:

u0 = H(e) + H(r)

v0 =
cos ϕ

n̂1

(
H(e) − H(r)

)
We see, that the structure of the equations is identical to the s-polarization
case, with the only difference that the terms n cos ϕ have to be replaced
by cos ϕ/n. Instead of the familiar electric field transmission and reflection
coefficients, it is now more convenient to define magnetic field transmission
and reflection coefficients according to:

t =
H(t)

H(e) ; r =
H(r)

H(e)

with the simplifying assumption of H(t) = 1. That leads us to the result:

t =
2 cos ϕ

u0 cos ϕ + n̂1v0
; r =

u0 cos ϕ − n̂1v0

u0 cos ϕ + n̂1v0
(8.21)



134 8 Extended Details: Gradient Index Films and Multilayers

where u and v are again taken at the film/ambient interface. So that again,
one has to solve (8.17) with the boundary conditions at the film/substrate
interface given by:

u = 1

v =
cos ϕs

n̂s

Having calculated u and v, the field transmission and reflection coefficients
(for the magnetic fields!!) are calculated from (8.21). Coming to the inten-
sities, one must keep in mind that one should never utilize expressions like
(6.19), because they are only valid for electric field transmission coefficients.
This is most easily to be seen for real refractive indices. In fact, the intensity
is then proportional to:

I ∝ n cos ϕ|E|2 ∝ n cos ϕ

∣∣∣∣Hn
∣∣∣∣2 =

cos ϕ

n
|H|2

Therefore, whenever we deal with magnetic field transmission coefficients, we
obtain for the intensity coefficients:

T =
Re

(
cos ϕs

n̂s

)
Re

(
cos ϕ
n̂1

) |t|2 ; R = |r|2 (8.22)

In order to get a systematic overview on the calculation strategy, the main
steps are summarized in Table 8.1.

8.2 Multilayer Systems

8.2.1 The Characteristic Matrix

We will now turn to a calculation method that is utmost important in thin
film spectroscopy: the matrix method. Again, we start with the mathematical
derivation of the material. The derivation will be performed for s-polarization,
the p-polarization analogon will be shortly treated at the end of the section.

We start from the system of (8.16):

s-polarization:

du

dz
= ik0v

dv

dz
= ik0

(
ε − η2)u

Let us assume that the film-air interface corresponds to the z-value z = 0.
Our task is to find a solution of (8.16) with:
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Table 8.1. Calculation of transmission and reflection of an arbitrary gradient index
layer on a semininfinite substrate

s-polarization p-polarization
Meaning of u Electric field Magnetic field
Meaning of v Magnetic field Electric field
System of equations
with ε = ε(z) du

dz
= ik0v

dv

dz
= ik0

(
ε − η2) u

du

dz
= ik0εv

dv

dz
= ik0

(
1 − η2

ε

)
u

Boundary conditions
at the film/substrate
interface u = 1

v = n̂s cos ϕs

u = 1

v =
cos ϕs

n̂s

Definition of field
transmission and re-
flection coefficients t =

E(t)

E(e)

r =
E(r)

E(e)

t =
H(t)

H(e)

r =
H(r)

H(e)

Expressions for field
transmission and re-
flection coefficients t =

2n̂1 cos ϕ

u0n̂1 cos ϕ + v0

r =
u0n̂1 cos ϕ − v0

u0n̂1 cos ϕ + v0

t =
2 cos ϕ

u0 cos ϕ + n̂1v0

r =
u0 cos ϕ − n̂1v0

u0 cos ϕ + n̂1v0

Intensity coefficients
for a film on a semi-
infinite substrate T =

Re (n̂s cos ϕs)
Re (n̂1 cos ϕ)

|t|2

R = |r|2
T =

Re
(

cos ϕs

n̂s

)

Re
(

cos ϕ

n̂1

) |t|2

R = |r|2

Effect of rear sub-
strate side

In full analogy to (7.25) and (7.26)
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u (0) = u0 (8.23)
v (0) = v0

Let us further suppose that we already know two particular solutions of the
system (8.16), corresponding to special boundary conditions, namely:

u1 (z) with u1 (0) = 1
v1 (z) with v1 (0) = 0

and

u2 (z) with u2 (0) = 0
v2 (z) with v2 (0) = 1

From (8.16) it is obvious that

v1
du2

dz
− v2

du1

dz
= u1

dv2

dz
− u2

dv1

dz
= 0

and hence
d
dz

(u1v2 − u2v1) = 0 ⇒ u1v2 − u2v1 = const. = 1 (8.24)

On the other hand, due to the principle of superposition, the solution of
(8.16) with the boundary conditions (8.23) may be written as:

u (z) = u1 (z) u0 + u2 (z) v0

v (z) = v1 (z) u0 + v2 (z) v0

or (
u (z)
v (z)

)
=
(

u1 (z) u2 (z)
v1 (z) v2 (z)

)(
u0
v0

)
(8.25)

Inverting (8.25) and using (8.24), we obtain:(
u0
v0

)
= M̂

(
u (z)
v (z)

)
=
(

v2 (z) −u2 (z)
−v1 (z) u1 (z)

)(
u (z)
v (z)

)
(8.26)

The matrix

M̂ = M̂ (z) ≡
(

v2 (z) −u2 (z)
−v1 (z) u1 (z)

)
(8.27)

is called the characteristic matrix of the film.
As it follows from (8.26), by means of the characteristic matrix it becomes

possible to relate the electric and magnetic fields at z = 0 to those at any
other z-value in the film. Of course, having the fields, the calculation of
transmittance and reflectance is possible as described in Sect. 8.1. Therefore,
the knowledge of the characteristic matrix is sufficient to describe the optical
properties of any medium with a dielectric function ε = ε(z).

For p-polarization, (8.26) and (8.27) are valid as well, with the only dif-
ference that u and v are now the solutions of (8.17).
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8.2.2 Characteristic Matrix of a Single Homogeneous Film

Let us calculate the characteristic matrix of a single homogeneous film (n �=
n(z)). This is an important special case. For s-polarization, from (8.11) we
find:

u′′ +
ω2

c2 (ε − η2)u = 0

v′′ +
ω2

c2 (ε − η2)v = 0

with
(ε − η2) = n̂2 cos2 ψ

The solutions that are consistent with (8.16) may be written as:

u1 = cos (k0n̂z cos ψ)
v1 = in̂ cos ψ sin (k0n̂z cos ψ)

u2 =
i

n̂ cos ψ
sin (k0n̂z cos ψ)

v2 = cos (k0n̂z cos ψ)

The characteristic matrix becomes:

M̂ (z) ≡
(

v2 (z) −u2 (z)
−v1 (z) u1 (z)

)
(8.28)

=

⎛
⎝ cos (k0n̂z cos ψ) − i

n̂ cos ψ
sin (k0n̂z cos ψ)

−in̂ cos ψ sin (k0n̂z cos ψ) cos (k0n̂z cos ψ)

⎞
⎠

Expression (8.28) is valid for s-polarization. For p-polarization, one obtains
in the same way:

M̂ (z) ≡
(

v2 (z) −u2 (z)
−v1 (z) u1 (z)

)
(8.29)

=

⎛
⎜⎝ cos (k0n̂z cos ψ) − in̂

cos ψ
sin (k0n̂z cos ψ)

−i
cos ψ

n̂
sin (k0n̂z cos ψ) cos (k0n̂z cos ψ)

⎞
⎟⎠

8.2.3 Characteristic Matrix of a Film Stack

Let us now assume, that instead of a single homogeneous film, we have a
stack of a certain number N of homogeneous films, each of them having a
thickness dj and a refractive index nj . Let us count the layers starting from
the incident medium side. The first film extends from z = 0 to z = z1, hence
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d1 = z1 − 0 = z1. Correspondingly, the second film extends from z = z1 to
z = z2, hence d2 = z2 − z1, and so on. What we obtain from (8.26) is a
recursive recipe to calculate the characteristic matrix of the stack:(

u0
v0

)
= M̂1 (z1)

(
u (z1)
v (z1)

)
= M̂1 (z1) M̂2 (z2 − z1)

(
u (z2)
v (z2)

)
= . . .

= M̂1 (d1) M̂2 (d2) . . .M̂N (dN )
(

u (zN )
v (zN )

)
We come to the result, that the whole stack is again characterized by a
2× 2-matrix, which is obtained by simple multiplication of the characteristic
matrices of the single films. Hence,

M̂ stack ≡
(

m11 m12
m21 m22

)
=

N∏
j=1

M̂ j (dj) (8.30)

8.2.4 Calculation of Transmittance and Reflectance

In order to calculate transmittance and reflectance of a stack, the only thing
that remains to be done is to relate the four elements of the characteristic
matrix of the stack to the transmittance and reflectance.

s-polarization:

As in Sect. 8.1, we have at the stack/substrate border:

u = u (zN ) = 1
v = v (zN ) = n̂s cos ϕs

From (8.20), it follows, that:

t =
2n̂1 cos ϕ

u0n̂1 cos ϕ + v0
; r =

u0n̂1 cos ϕ − v0

u0n̂1 cos ϕ + v0

while from (8.26) and (8.30):(
u0
v0

)
=
(

m11 m12
m21 m22

)(
u (zN )
v (zN )

)
=
(

m11 m12
m21 m22

)(
1

n̂s cos ϕs

)
Therefore,

u0 = m11 + m12n̂s cos ϕs

v0 = m21 + m22n̂s cos ϕs

and thus:

t =
2n̂1 cos ϕ

(m11 + m12n̂s cos ϕs) n̂1 cos ϕ + m21 + m22n̂s cos ϕs
(8.31)

r =
(m11 + m12n̂s cos ϕs) n̂1 cos ϕ − (m21 + m22n̂s cos ϕs)
(m11 + m12n̂s cos ϕs) n̂1 cos ϕ + m21 + m22n̂s cos ϕs

The intensity coefficients are obtained in the usual way.
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p-polarization:

Accordingly, for p-polarization we have:

u (zN ) = 1

v (zN ) =
cos ϕs

n̂s

and

t =
2
cos ϕ

n̂1

u0
cos ϕ

n̂1
+ v0

; r =
u0

cos ϕ

n̂1
− v0

u0
cos ϕ

n̂1
+ v0

From (
u0
v0

)
=
(

m11 m12
m21 m22

)(
u (zN )
v (zN )

)
=
(

m11 m12
m21 m22

)(
1

cos ϕs

n̂s

)
we find:

u0 = m11 + m12
cos ϕs

n̂s

v0 = m21 + m22
cos ϕs

n̂s

So that t and r become:

t =
2 cos ϕ

n̂1(
m11 + m12

cos ϕs

n̂s

)
cos ϕ
n̂1

+
(
m21 + m22

cos ϕs

n̂s

)
(8.32)

r =

(
m11 + m12

cos ϕs

n̂s

)
cos ϕ
n̂1

−
(
m21 + m22

cos ϕs

n̂s

)
(
m11 + m12

cos ϕs

n̂s

)
cos ϕ
n̂1

+
(
m21 + m22

cos ϕs

n̂s

)
When calculating intensity transmission and reflection coefficients for p-
polarization, one must again keep in mind that the field coefficients t and
r express the relation between magnetic fields. For T - and R-calculation, one
has therefore to use (8.22).

Table 8.2 resumes the main steps for calculating the optical spectra of a
stack by means of the matrix method.

The matrix method offers the possibility to calculating the spectral prop-
erties of numerous practically relevant thin film systems, such as high re-
flectors, antireflection coatings, and others. Generally, the capacitance of the
equations fixed in Table 8.2 is high enough to fill complete monographs which
exclusively deal with questions of optical thin film systems design. We em-
phasize, that this is not the purpose of this book. The interested reader is
therefore referred to the specialized literature on this subject. Nevertheless,
some special systems that might be not considered in the optical coatings
design literature will be addressed in Chap. 9. Some simpler examples are
included into the problems to Chaps. 6–9.



140 8 Extended Details: Gradient Index Films and Multilayers

Table 8.2. Calculation of transmission and reflection of an arbitrary thin film stack
on a semininfinite substrate

s-polarization p-polarization
M , single film

(
cos (k0n̂d cos ψ) − i

n̂ cos ψ
sin (k0n̂d cos ψ)

−in̂ cos ψ sin (k0n̂d cos ψ) cos (k0n̂d cos ψ)

) (
cos (k0n̂d cos ψ) − in̂

cos ψ
sin (k0n̂d cos ψ)

−i
cos ψ

n̂
sin (k0n̂d cos ψ) cos (k0n̂d cos ψ)

)

M , stack

M̂stack ≡
(

m11 m12

m21 m22

)
=

N∏
j=1

M̂ j (dj)

Field transmission and reflection coefficients

t =
E(t)

E(e) ; r =
E(r)

E(e) t =
H(t)

H(e) ; r =
H(r)

H(e)

Expressions for field transmission and reflection coefficients

t =
2n̂1 cos ϕ

(m11 + m12n̂s cos ϕs) n̂1 cos ϕ + m21 + m22n̂s cos ϕs

r =
(m11 + m12n̂s cos ϕs) n̂1 cos ϕ − (m21 + m22n̂s cos ϕs)
(m11 + m12n̂s cos ϕs) n̂1 cos ϕ + m21 + m22n̂s cos ϕs

t =
2
cos ϕ

n̂1(
m11 + m12

cos ϕs

n̂s

)
cos ϕ

n̂1
+

(
m21 + m22

cos ϕs

n̂s

)

r =

(
m11 + m12

cos ϕs

n̂s

)
cos ϕ

n̂1
−

(
m21 + m22

cos ϕs

n̂s

)
(

m11 + m12
cos ϕs

n̂s

)
cos ϕ

n̂1
+

(
m21 + m22

cos ϕs

n̂s

)

Intensity coefficients for a film on a semi-infinite substrate

T =
Re (n̂s cos ϕs)
Re (n̂1 cos ϕ)

|t|2 ; R = |r|2
T =

Re
(

cos ϕs

n̂s

)

Re
(

cos ϕ

n̂1

) |t|2 ; R = |r|2

Effect of rear substrate side In full analogy to (7.25) and (7.26)
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9.1 Quarterwave Stacks and Derived Systems

This chapter will conclude the second part of this book. It will deal with
a few special cases of multilayer systems that may be described in terms
of the theory derived in Chap. 8. Additionally, a qualitative treatment of
narrowband filters and absorbers based on the so-called Resonant Grating
Waveguide Structures (GWS) will be given.

Let us start with the mathematically simple case of a quarterwave stack.
As we have already mentioned in Chap. 7, at a certain wavelength, a non-
absorbing layer may act as a quarterwave layer at a given reference wave-
length λ0 supposed that condition:

nd =
λ0

4
(9.1)

is fulfilled (normal incidence). Let us now assume, that we have a multilayer
stack built from alternating high- and low-refractive index layers with cor-
responding refractive indices n1 and n2 and an optical thickness determined
by (9.1). In this case, all layers will behave as quarterwave layers at the same
reference wavelength λ0. Let us see how the reflectance of such a system will
look like.

If the identical sequence of the pair of high- and low-refractive index
quarterwave layers is repeated for N times, then, for normal incidence, the
matrix of the stack becomes:

M =

⎛
⎜⎜⎝
(

−n2

n1

)N

0

0
(

−n1

n2

)N

⎞
⎟⎟⎠

From (8.32), we find the reflectance with air as incidence medium:

R = |r|2 =

∣∣∣∣∣∣∣∣∣
ns −

(
n1

n2

)2N

ns +
(

n1

n2

)2N

∣∣∣∣∣∣∣∣∣

2
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It is obvious, that for any pair of refractive indices n1 �= n2, we get:

lim
N→∞

R = 1

Therefore, such quarterwave stacks may find applications as high reflectors
(dielectric reflectors) in the vicinity of the reference wavelength.

The previous discussion regarded the case of an even number of layers.
The general conclusion on high reflectivity is also valid for an odd number of
quarterwave layers, as it may easily be checked by the reader himself.

The previous derivation was of purely mathematical nature. But behind
the mathematics, there is a simple physical mechanism that leads to the high
reflectivity: Transmitted waves interfere destructively, while reflected waves
interfere constructively. The situation is vice versa in antireflection coatings.

Having understood the working principle of a dielectric reflector, it is also
easy to understand the general construction principle of a narrow bandpass
filter. Let us start from a dielectric reflector built from alternating high re-
fractive index quarterwave layers (H) and low refractive index quarterwave
layers (L). Let us regard a sequence of quarterwave layers that is formally
written as:

air |H (LH)N | substrate (stack1)

That means, that the multilayer stack starts with a high index quarter wave
layer at the air side of the stack, followed by a pair of a low- and a high index
quarterwave layer that is repeated N times. Consequently, the full number
of quarterwave layers in stack1 is 2N + 1.

Supposing that N is an even number, the same layer sequence may be
written as:

air |H (LH)N | substrate = air |(HL)N H| substrate
= air |(HL)N/2 H (LH)N/2| substrate

Let us now modify the stack. We introduce a further quarterwave high index
layer in the centre of the stack and obtain the design:

air |(HL)N/2 HH (LH)N/2| substrate (stack2)

At the reference wavelength, the combination HH is obviously a single
halfwave layer. Therefore, it has no optical effect, and may be removed. So
we get:

air |(HL)N/2 HH (LH)N/2| substrate = air |(HL)N/2 (LH)N/2| substrate
air |(HL)N/2−1 HLLH (LH)N/2−1| substrate

Again, the combination LL is a halfwave layer and may be removed. But
this removal will create a new halfwave layer, and the process may be con-
tinued until there is no layer at all remaining. Consequently, at the reference
wavelength, the system stack2 has the same transmission and reflection as
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Fig. 9.1. Calculated reflection spectra of stack1 (solid line) and stack2 (short dash).
In both cases, the reference wavelength is 600 nm

the air-substrate-interface. For a typical glass substrate, we therefore have to
expect a transmittance in the region of 0.92.

So far, the considerations on high reflectance of stack1 and high transmit-
tance of stack2 only concern the T and R values at the reference wavelength
λ0. Apart from this wavelength, T and/or R may be calculated in terms of
the theoretical apparatus derived in Chap. 8.

Figure 9.1 shows the calculated reflectance of two model systems. In the
first case (solid line), we have assumed a quarterwave stack according to
stack1 with N = 10 (21 layers). The simulation has been carried out ne-
glecting dispersion and absorption. We assumed a high refractive index of
nH = 2.3 and a low refractive index of nL = 1.5 and a reference wavelength
λ0 = 600 nm. The calculation confirms the expected high reflection in the
vicinity of the reference wavelength. This region of high reflectance is some-
times called the rejection band.

The second spectrum (short dash) corresponds to a system like stack2, all
parameters are the same as for stack1. The spectra look qualitatively similar,
but at the reference wavelength, stack2 shows a sharp drop in the reflectance,
corresponding to a narrow region of high transmittance. Hence, stack1 may
work as a primitive version of a broadband reflector, while stack2 represents
a crude narrowline transmission filter, which transmits light at 600 nm but
blocks the radiation in the vicinity of the reference wavelength.

In practice, it may become highly desirable to suppress the sidelobes out-
side the high reflection regions shown in Fig. 9.1. For example, that might be
necessary when the stack should work as an edge filter.

Although this is definitely not a book on thin film design, let us demon-
strate the simplest method to flatten the reflectance characteristic at the long
wavelength side of the rejection band. What we will obtain then is a longpass
filter: It reflects the radiation at shorter wavelength, while the long wave-
length region is transmitted. Again, we will start from stack1, but modify
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Fig. 9.2. Calculated reflection spectra of stack1 (solid line) and stack3 (short dash).
In both cases, the reference wavelength is 600 nm

the first and the last layer of the stack: instead of quarterwave layers, the
thickness of the outer layers will be chosen according to:

nHdH =
λ0

8

Then, instead of stack1, we obtain the design stack3:

air |0.5H (LH)N−1 L 0.5H| substrate (stack3)

This system has a reflectance like that shown in Fig. 9.2 in short dash. In
particular, one sees that the reflection sidelobes at the short wavelength edge
of the spectrum are magnified, while those at the long wavelength edge are
nearly completely suppressed. Therefore such as system may work as a long-
wave pass filter.

Concluding this section, let us finally remark that the existence of a rejec-
tion band in a quarterwave stack is connected to the fundamental principles of
wave propagation in periodic systems. In fact, any real quarterwave stack rep-
resents a truncated periodic arrangement with a periodic modulation of the
refractive index. In such systems, destructive interference forbids the prop-
agation of waves in certain spectral regions. Therefore, in these ‘forbidden’
zones, the transmittance approaches zero. For reasons of energy conserva-
tion, the reflectance must then approach the value 1. The same effect may be
obtained for any periodic layer structure with a continuous refractive index
profile, as it has been demonstrated in the reflectance curve from Fig. 8.2
where we dealt with rugate filters.
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9.2 Extended Detail: Remarks on Resonant Grating
Waveguide Structures

9.2.1 General Idea

In the previous subsection we have demonstrated, that destructive interfer-
ence in transmission and constructive in reflection may lead to a stack reflec-
tivity that approaches 100% when the number of layers becomes infinitive.
In fact, the same high reflectivity may be achieved by a single layer design
in a more subtle way, when the single layer is combined with a diffraction
grating. This leads us to the so-called resonant Grating Waveguide Structures
(GWS). You may note, that due to the grating, the system geometry is again
periodic.

In its simplest version, a GWS is built up by a single high-refractive
index layer (the waveguide layer) with a one-dimensional diffraction grating
on top (see Fig. 9.3). It is essential (as will be shown below), that the film
(waveguide) refractive index is higher than the indices of the ambient and
the substrate. Then, for a sufficiently large propagation angle of the light, it
will suffer total internal reflection at both film interfaces, so that the wave
cannot leave the film, instead, it propagates in the waveguide.

We will restrict ourselves to the case that the incidence medium is air.
Let us now try to obtain a qualitative understanding of the general function
of a GWS.

As seen in Fig. 9.3, the incident irradiation impinges onto the diffraction
grating. In the general case, this leads to the appearance of several modes
of diffracted waves corresponding to different orders of diffraction. They will

Fig. 9.3. Principal structure of a GWS. In the high-refractive index film, both
zero- and first-order diffracted waves may propagate. The first-order diffracted wave
suffers total internal reflection at the film boundaries. The performance of the sys-
tem is determined by interference of multiply reflected as well as diffracted and
re-diffracted waves
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occur in both reflection and transmission. The propagation angle ψM of the
M -th order diffracted wave may be calculated according to the following
equation (9.2) (please consult textbooks on optics for the derivation):

reflection: sinψM = sin ϕ +
Mλ

Λ
; M = 0, ±1,±2, . . .

(9.2)
transmission: sin ψM =

sin ϕ

n
+

Mλ

nΛ
; M = 0, ±1,±2, . . .

M is the order of diffraction. For reflected modes, the wave propagates in
air, so that n = 1. For transmitted modes, n equals the refractive index of
the film material. For the zero’s diffraction order, (9.2) becomes identical to
Snell’s law of refraction. Λ is the period of the grating.

9.2.2 Propagating Modes and Grating Period

As in the case of total internal reflection, the modes can only propagate into
the film (or back into the ambient) when sinψM < 1 is fulfilled. Otherwise
the wave is evanescent. Particularly, it is possible to chose the geometrical
parameters such that no diffracted waves occur in reflection, while in trans-
mission, at least the first order diffracted wave is allowed to propagate. Let
us for simplicity regard only the case M = +1. We have:

reflection: sinψ1 > 0 ⇒ sin ϕ +
λ

Λ
> 1 ⇒ Λ <

λ

1 − sin ϕ

transmission: sin ψ1 < 1 ⇒ sin ϕ

n
+

λ

nΛ
< 1 ⇒ Λ >

λ

n − sin ϕ

These conditions are fulfilled for:

λ

n − sin ϕ
< Λ <

λ

1 − sin ϕ
(9.3)

Condition (9.3) defines a range of grating periods suitable for our idea, as
long as n > 1 is fulfilled.

A grating period chosen according to (9.3) guarantees, that an incident
wave ‘creates’ at least three propagating modes: the specularly reflected wave
(M = 0 in reflection), the usual transmittance (M = 0 in transmission), and
a diffracted wave (M = 1 in transmission) that propagates into the film.

Once the diffracted wave has been generated by the grating, it may be
re-diffracted into the zero’s order at next bouncing onto the grating and
thus contribute to the usual transmittance and reflectance. When the phase
relations are suitable, the specularly reflected wave may be enhanced, while
the transmission becomes suppressed – similar to what we have seen in the
multilayer stack. In order to get 100% reflection, of course, no light should be
allowed to leave the system into the substrate. This is guaranteed when the
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diffracted wave suffers total internal reflection at the film-substrate-interface.
In terms of (6.24) this leads us to the condition:

sin ψ1 =
sin ϕ

n
+

λ

nΛ
>

ns

n

or

Λ <
λ

ns − sin ϕ
(9.4)

For ns > 1, (9.3) and (9.4) finally yield:

λ

n − sin ϕ
< Λ <

λ

ns − sin ϕ
(9.5)

For the minus first order (M = −1), we find in analogy:

λ

n + sin ϕ
< Λ <

λ

ns + sin ϕ
(9.6)

It turns out, that the refractive index of the film must be higher than that
of the substrate.

Because in oblique incidence the plus first and minus first orders are phys-
ically distinct, in the general case we have two types of first order diffracted
waves.

9.2.3 Energy Exchange Between the Propagating Modes

Having clarified the relation between grating period and refractive indices, let
us now try to understand the energy exchange between the incident, trans-
mitted, reflected, and first-order diffracted waves in a qualitative manner.
Imagine a wave front impinging onto the grating. A part of the intensity will
be specularly reflected, while the other part is either ordinarily transmitted
or diffracted. The diffracted wave suffers total reflection at the film-substrate
boundary, and bounces onto the grating for a second time, but now from the
film side. Again, it may be reflected (remaining in the same diffracted mode)
or suffer a second diffraction process, which spreads the intensity into one
of the other allowed modes. Note that a wave primarily diffracted into the
plus first order wave may be diffracted into the minus first order propagating
mode at second bouncing.

Let us now assume, that we have chosen a particular film thickness so
that the diffracted waves interfere constructively when having performed one
loop in the film. The phase gain while propagating through the film has been
calculated previously (equation (7.15)). We have:

2δ =
4π

λ
nd cos ψ
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This expression is obtained from (7.15) when re-substituting the incidence
angle ϕ by the refraction angle ψ, which corresponds to the propagation angle
relevant for the system discussed here. Consequently, constructive overlap-
ping of the diffracted wave trains occurs, when the condition:

4π

λ
nd cos ψ + 2δ21 + 2δ23 = 2jπ; j = 0, 1, 2, . . . (9.7)

is fulfilled. 2δ21 is the phase shift of the wave when being reflected at the
grating side of the film, and 2δ23 that at the film-substrate side. The factor
2 has been introduced for mathematical convenience. As before, j is the
interference order.

In constructive interference conditions, the wave is expected to grow in
intensity. It cannot loose energy at the film-substrate interface. The only
energy-loss channel accessible for the diffracted wave is the re-diffraction at
the grating. This loss grows proportionally to the intensity of the diffracted
wave. In stationary conditions, the loss at the grating must compensate the
energy input from the incident irradiation. The only question is: Which of
the energy loss mechanisms of the diffracted wave is the dominant one, zero
order transmission or reflection?

In fact, in the discussed case of coherent superposition of the diffracted
wave, the incident intensity in the stationary case will only contribute to the
systems reflectance. As long as there is energy re-diffracted into the zero-
order transmitted wave, part of this intensity comes back to the grating as
the result of reflection at the film-substrate interface, and again contributes
to the diffracted wave. Hence, in this case we have no stationary regime, be-
cause the diffracted wave still grows in intensity as the result of the mentioned
feedback mechanism. On the other hand, any intensity going into the zero-
order reflected wave leaves the system forever. Therefore, the intensity of the
diffracted (guided) wave will increase until the intensity of the zero-order re-
flected light completely compensates the energy input caused by the incident
irradiation. In other words, we get 100% reflection. Then, the transmittance
must be zero, as the result of destructive interference between multiple in-
ternal reflections of zero-and first order diffracted waves and their mutual
energy exchange.

9.2.4 Analytical Film Thickness Estimation for a GWS

Of course, the mentioned constructive overlapping of the diffracted wave
trains is only possible when the wavelength is consistent with (9.7). Let us
further refer to this wavelength as the resonance wavelength λ0. According to
(9.7), there are several film thickness values {dj} corresponding to a desired
resonance wavelength. They may be explicitly calculated according to:

d = dj =
λ0Λ

2π

jπ + δ21 + δ23√
n2Λ2 − (Λ sin ϕ ± λ0)

2
(9.8)
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which is obtained from (9.7) when cos ψ is substituted by:

cos ψ =

√
1 − (Λ sin ϕ ± λ0)

2

n2Λ2

as it follows from (9.2).
The phase shift δ23 is easily calculated from Fresnel’s coefficients assuming

internal total reflection conditions (see problem 1 to Chaps. 6–9). On the
other hand, δ21 cannot be calculated this way due to the finite profile depth
of the grating itself. However, when the grating depth is much smaller than
the wavelength, it may be neglected, and then the phase shift may again
be approached by the expression following from Fresnel’s coefficients at the
film-air interface. This leads to the following equations:

tan δ21,s =
1
n2 tan δ21,p =

√
(Λ sin ϕ ± λ0)

2 − Λ2

n2Λ2 − (Λ sin ϕ ± λ0)
2 ;

tan δ23,s =
n2

s

n2 tan δ23,p =

√
(Λ sin ϕ ± λ0)

2 − n2
sΛ

2

n2Λ2 − (Λ sin ϕ ± λ0)
2 (9.9)

‘ + ’ : Λ ∈
[

λ0

n − sin ϕ
,

λ0

ns − sin ϕ

]
; ‘ − ’ : Λ ∈

[
λ0

n + sin ϕ
,

λ0

ns + sin ϕ

]
The subscripts s and p denote s- or p-polarization of the incident light, ns is
the substrate refractive index. The different signs in (9.8)–(9.9) correspond to
the first (+) and minus first (−) diffraction orders, which are not equivalent
for oblique light incidence.

When applying (9.8)–(9.9), one should keep in mind that these equa-
tions have been obtained neglecting the finite profile depth of the grating.
That leads to a systematic error in the film thickness estimation, which is of
the order of the grating depth itself. On the other hand, in (9.8)–(9.9) any
absorption losses are neglected. In practice, absorption will cause a certain
absorption loss A in the waveguide layer. Additionally, the presence of ab-
sorption destroys total internal reflection at the interfaces of the waveguide,
which leads to a residual transmission T even in resonance conditions. Both
circumstances reduce the peak reflectance Rmax achieved by the system.

GWS are candidate systems for extreme narrow line reflection filters, be-
cause in resonance conditions the reflectance may theoretically reach 100%,
while the system is only merely reflective off-resonance. Consequently, the re-
flection spectrum is expected to show narrow peaks of nearly ideal reflection,
which suggest applications as narrowband reflection filters.

The exact theoretical treatment of a GWS is more complicated, because
the real profile shape and depth of the grating have to be taken into account.
In this case, our theoretical apparatus as derived so far is clearly at stake.
In practice, calculations of this kind are performed today utilizing commer-
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Fig. 9.4. Model calculation of the normal incidence reflectance of a GWS. The
film refractive index is 2.3, the substrate index 1.37. The assumed grating period
is 475 nm, the grating depth 40 nm, and the film thickness 285.2 nm

cial grating solver software, which accomplishes these calculations, for exam-
ple, within the Rigorous Coupled Wave Approach (RCWA). Here, Maxwell’s
equations are rigorously solved expanding the electric and magnetic fields
into a series of Bragg modes.

Figure 9.4 shows the thus calculated normal incidence reflection spectrum
of a GWS with parameters as defined in the figure caption. As the assumed
one-dimensional grating structure is clearly laterally anisotropic, even at nor-
mal incidence, the reflection behaviour is dependent on the polarization. At
oblique incidence, each of the reflection lines splits into two maxima due to
the different behaviour of the plus and minus first diffraction orders.

9.2.5 Remarks on GWS Absorbers

With slight modifications in the design of Fig. 9.3, GWS may be used as
spectrally selective absorbers. Figure 9.5 (left) depicts one of the possible
realizations of a GWS based absorber. It consists of the waveguide film and
a metal layer, separated from each other by the diffraction grating. Due to
the (sufficiently thick) metal layer, the transmittance is automatically zero,
so that the light is either reflected by the system or absorbed in the metal
fraction. Again, the diffracted wave is in total internal reflection conditions at
the waveguide-air interface, so that diffracted waves suffer multiple bouncing
onto the metal surface, which leads to an enhancement of light absorption. In
resonance conditions, one may achieve destructive interference in reflectance,
so that the light is effectively absorbed, especially in the case of p-polarization,
because in this case the guided mode may couple to a surface plasmon po-
lariton at the waveguide-metal interface.
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Fig. 9.5. Left: GWS-absorber, grey : substrate, black : metal, white: waveguide
material; right: calculated reflectance for p-polarization (RCWA); d = 250 nm;
grating profile depth 50 nm; Λ = 475 nm; n = 1.37. The calculation has been
carried out supposing aluminum as the metal

Figure 9.5 (right) shows the calculated reflectance of a model system
with vanishing reflectance at nearly 650 nm. The theoretical absorptance is
consequently close to 100%.

Although this calculation has again been performed in terms of the
RCWA, an analytical estimation of the waveguide thickness by (9.8) is possi-
ble as well. However, the phase shift 2δ23 now has to be calculated from the
complex Fresnel’s coefficient at the waveguide-metal interface, considering
both the real and imaginary parts of the metals index of refraction.

9.3 Resume from Chapters 6–9

9.3.1 Overview on Main Results

Today’s optical instrumentation becomes more and more complex. In order to
guarantee durability and high optical performance of any optical component,
its surfaces have to be over-coated with specially designed thin film stacks
to achieve tailored optical properties as well as surface protection. Most of
the coatings produced today are built from optically (nearly) isotropic and
homogeneous materials. Therefore, it is utmost important to understand the
theory of the optical properties of homogeneous and isotropic thin solid films
and multilayer stacks built from them. The Chaps. 6–9, which form the second
part of this book, were mainly dedicated to this kind of system.

In particular, we obtained the following results:

– The reflection at ideally smooth surfaces or interfaces as well as the trans-
mission of light through the interfaces may be described in terms of Fres-
nel’s equations. Metallic reflection and total internal reflection of light
have been discussed as special cases of Fresnel’s equations.
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– We established the dispersion relation for propagating surface plasmons.
– Explicit expressions have been derived to calculate both transmittance

and reflectance of a thick slab. The derived theory allows to consider the
effects of absorption as well as oblique incidence.

– The corresponding equations for a single film have also been derived. They
include free standing films, films on a semiinfinite substrate, as well as
films on a possibly absorbing substrate of finite thickness. The important
special cases of quarterwave and halfwave layers have been addressed as
well.

– Finally, we derived the matrix formalism to calculate transmittance and
reflectance of multilayer stacks. Some simple examples of high reflectors,
narrowband filters as well as an edge filter have been demonstrated.

The previous results have been derived to deal with the optical behaviour of
any thin film stack built from optically homogeneous and isotropic materials.
This will be sufficient to handle a large amount of practically important thin
film systems. On the other hand, there is extensive theoretical and experi-
mental research today pursuing on the implementation of optically inhomo-
geneous and/or anisotropic coating materials to manufacture coatings with
principally novel optical properties. To comply with these trends, we also re-
garded special systems that go beyond the homogeneous and isotropic films
mentioned so far:

We demonstrated the effect of uniaxial optical anisotropy on Fresnel’s
reflection coefficients. On this basis, important effects of the new field of
Giant Birefringent Optics (GBO) could be explained.

A mathematical apparatus has been derived to calculate the optical prop-
erties of inhomogeneous films with a refractive index that changes along the
film axis. As examples, we regarded the special cases of linear gradient lay-
ers and rugates. As in the quarterwave stack, the periodic modulation of
the refractive index leads to the appearance of transmission stopbands (and
correspondingly to regions of high reflection).

As the last example, we provided a qualitative discussion of the be-
haviour of resonant Grating Waveguide Structures (GWS). In the context
of the previous statements, these systems combine optical inhomogeneity
with anisotropy. Indeed, regarding the diffraction grating as a thin later-
ally textured film, the latter appears to be laterally inhomogeneous with a
periodic modulation of the refractive index. On the other hand it is clearly
anisotropic, therefore exhibiting polarizing properties even at normal light in-
cidence. Again, these systems show reflection maxima, which are equivalent
to transmission stopbands. As in the case of quarterwave stacks or rugates,
the existence of a stopband is caused by the periodicity of the system, here
resulting from the assumed grating structure.

Table 9.1 gives an overview of the above mentioned coating types and
their mutual relation with respect to homogeneity and isotropy. The typi-
cal dielectric coatings, as composed from homogeneous and isotropic layer
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Table 9.1. Schematic overview on the discussed research fields in thin film optics

Optically
homogeneous

Optically
isotropic

Pure materials or nanoscopi-
cally homogeneous mixtures

Composites or porous
layers

Non-absorbing Absorbing Non-
absorbing

absorbing

yes
yes Conventional

dielectric
Coatings
(Sect. 8.2, 9.1)

Conventional
(selective)
absorbers,
metal films

composite
dielectric
coatings

Cermets,
metal island
films

no Giant
birefringent
optics
(Sect. 6.5)

Polarizer foils Metal island films
(Sect. 4.5)

no
yes Rugates,

Gradient index layers
(Sect. 8.1)

Rugates,
Gradient index layers

Photonic crystals and
Plasmonicsno Grating

waveguide
structures
(reflectors)
(Sect. 9.2.1–
9.2.4)

Grating
waveguide
structures
(absorbers)
(Sect. 9.2.5)

materials, are represented in the left upper corner in the table. Anisotropy
or inhomogeneity of the coating materials (moving downwards in the ta-
ble) leads to such important classes of novel coatings like Giant Birefringent
Optics-devices and rugate filters. Finally, the Resonant Grating Waveguide
Structures (GWS) combine lateral inhomogeneity with anisotropy.

On the contrary, starting from conventional coatings and moving to the
right in Table 9.1 will lead us to nanoscopically heterogeneous coating ma-
terials, which may however be optically homogeneous due to the small char-
acteristic size of the structural units. In this way it is possible to manipulate
optical material properties, offering more flexibility in the choice of optical
constants for design tasks. In Chap. 4, metal island films have been discussed
as a prominent example.

The most complicated case, namely the presence of anisotropy, absorption,
and heterogeneity on different length scales in combination will finally lead
to the fields of photonics and plasmonics, but is not the subject of this book.

9.3.2 Examples

In order to illustrate the theoretical results obtained in the second part of
this book, let us look at a few experimental examples. Figure 9.6 shows the
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Fig. 9.6. Left: measured reflectance of a quarterwave stack (solid) and a rugate
filter (dash); right: TEM cross sectional image of the first two periods of the rugate
filter (Courtesy of Ute Kaiser, FSU Jena, Germany)

measured reflectance of a quarterwave stack that is built from alternating nio-
bium pentoxide and silicon dioxide layers (solid line). In sum 17 layers have
been deposited with a thickness corresponding to a central rejection wave-
length of 1064 nm. In addition, the figure shows the reflectance of a rugate
filter with 20 periods, consisting of the same materials (dash). The mismatch
in the central wavelength results from practical difficulties in monitoring the
rugate filter period during deposition.

Figure 9.6 (right) shows a cross-sectional image of the first two periods of
the mentioned rugate filter, as obtained by transmission electron microscopy.
The concentration (and refractive index) profile obviously changes in a con-
tinuous manner with increasing distance from the substrate. A more detailed
analysis shows that the profile is indeed close to a sinusoidal one.

The second example concerns a dielectric grating waveguide structure.
To produce a grating wave guide structure of the type as discussed in

Sect. 9.2.1, one would principally have to deposit a waveguide layer with
a high refractive index onto a low refractive index transparent substrate.
After that, the grating on top of the film might be produced by a suitable
lithographic technique.

In fact, one may choose a somewhat different way. The grating might be
etched on the top of the substrate, and after that, the waveguide layer may
be deposited. In this case, instead of the geometry from Fig. 9.3, we have to
expect a sample geometry like shown in Fig. 9.7.

Let us have a look at a grating waveguide structure that has been pro-
duced this way. In experimental practice, sample preparation started with
lithographic writing of the grating on the bare substrate surface. As sub-
strate, a fused silica wafer has been used. Figure 9.8 shows the SEM image
of a substrate surface with a rectangular grating (groove depth t = 57 nm,
period Λ = 330 nm).
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Fig. 9.7. Alternative sample geometry of a grating waveguide structure

Fig. 9.8. SEM image of the grating on fused silica (Courtesy of FSU (IAP) in
Jena, Germany)

Before depositing the waveguide layer, the normal incidence transmit-
tance of the grating-on-substrate system has been measured by means of a
Zeiss microscope spectrophotometer for both polarizations. One had to use a
microscope photometer because of the small sample area. The corresponding
transmittance spectra are depicted in Fig. 9.9 and show two characteristic so-
called Wood’s anomalies at 330 nm and 480 nm, corresponding to λ = Λ and
λ = ns ×Λ. TE denotes s-polarization, in grating theory that means that the
electric field vector is parallel to the grooves of the grating. Correspondingly,
in the TM wave (p-polarization), the electric field vector is perpendicular to
the grooves.

After that, the waveguide layer (titanium dioxide) has been deposited by
electron beam evaporation in a Balzers BAK 640 deposition system. Conse-
quently, we have to expect that the final sample structure rather resembles
the geometry shown in Fig. 9.7 than that in Fig. 9.3.
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Fig. 9.9. Transmission spectra of the textured silica substrate from Fig. 9.8

Fig. 9.10. Left: Calculated transmittance and reflectance for a GWS (TE wave);
right: experimental spectra

Because transmission and reflection spectra of GWS structures are ex-
tremely sensitive to the angle of incidence, the high numeric aperture of the
microscope photometer made it impossible to record the spectra by means
of this kind of equipment. Instead, one had to use a laser source for sam-
ple illumination that guarantees nearly parallel incident light at the sample
surface, which had an area of only 1 mm × 1 mm. For the present study, a
transmission and reflection measurement set-up at the Laser Laboratorium
Göttingen, Germany has been utilized. The incident light was provided by
femtosecond laser pulses of a titanium-sapphire laser. By means of this laser
system, transmission and reflection spectra at nearly normal light incidence
could be recorded around λ = 750 nm in a spectral range limited by the
spectral bandwidth of the laser pulse. Practically, the incidence angle was set
10 deg.

Figure 9.10 (left) shows the TE wave transmittance and reflectance cal-
culated in terms of the RCWA for a GWS, built from a TiO2 film on SiO2.
In the given spectral region, the TiO2 refractive index was set 2.216, while
the extinction coefficient is around 6 × 10−5. The calculation is carried out
for an assumed film thickness of 400 nm and a grating thickness of 50 nm,
the grating period being 328 nm. On both sides of the film, we assumed a
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rectangular grating profile such as shown in Fig. 9.7 with a filling factor of
0.5. The assumed angle of incidence is 9.8 deg.

On the right hand sight of Fig. 9.10, one sees corresponding experimental
spectra, recorded at an angle of incidence of 10 deg. The evaporated TiO2-
mass coverage corresponds to a thickness of 451 nm, so that, according to
Fig. 9.7, d ≈ 401 nm.

As seen from the figure, the experimental maximum reflectance in reso-
nance reaches approximately 87% , while the rejection band FWHM is around
2 nm. The reflectance is thus somewhat lower than the theoretical one, which
is around 95% in resonance. As the sum of transmittance T and reflectance
R tends to exceed the 100%-value in several parts of the spectrum in a signif-
icant manner, it is clear that the inaccuracy of the T - and R-measurements
must be of the order of a few percent.

9.3.3 Problems

1. Derive explicit expressions for the phase shift occuring at an interface at
total internal reflection (real refractive indices only).

Answer:

s-polarization: arg rs = 2 arctan

⎛
⎝−

√
sin2 ϕ − n2

2
n2

1

cos ϕ

⎞
⎠

p-polarization: arg rp = 2 arctan

⎛
⎜⎜⎜⎜⎝−

n1

√
n2

1

n2
2

sin2 ϕ − 1

n2 cos ϕ

⎞
⎟⎟⎟⎟⎠

Remark: Use expressions (6.14) and (6.16) and consider that cos ψ is
purely imaginary. The solution is then immediately obtained calculating
the phase of the Fresnel’s coefficients. In order to obtain expressions (9.9),
the angle ψ has to be expressed as a function of grating period and
wavelength according to (9.2).

2. Repeat the same for an air-metal interface at oblique incidence, assuming
ω → 0!

Answer:
p-polarisation: no phase shift
s-polarization: the phase shift is π

Remark: For a vanishing frequency, the refractive index of a metal be-
comes infinitively large by modulus. Therefore, from Fresnel’s formulae
we immediately obtain rp → 1 and rs → −1. At any angle of incidence, in
s-polarization the electric field vectors at the metal surface are therefore
equal by modulus, but antiparallel, so that the resulting field strength is



158 9 Special Geometries

zero. On the other hand, according to Fig. 6.3, the mutual orientation of
the field strength vectors for p-polarization depends on the angle of inci-
dence. For normal incidence, we have the same situation as in the case of
s-polarization, hence the vectors are equal by modulus and antiparallel.
On the other hand, at grazing incidence, the vectors are nearly paral-
lel, so that the field strength vectors sum up to a higher resulting field
strength. A weakly absorbing adsorbate layer at the metal surface may
therefore be detected in the reflectance spectrum of the p-polarized light
at grazing incidence, while the reflectance of s-polarized light is insensi-
tive to the adsorbate. This effect is frequently used in the infrared spec-
tral region for the detection of adsorbates at metal interfaces. The cor-
responding spectroscopy method is commonly called Infrared Reflection
Absorption Spectroscopy IRAS. Due to the frequency limitations (IR),
in IRAS one detects vibrational degrees of freedom of the adsorbates. As
in p-polarization the resulting E-vector is normal to the metal surface, it
may only excite molecular vibrations normal to the surface. Hence, the
resulting spectra may be used to identify the adsorbate molecules, and
to determine their orientation with respect to the surface.

3. Calculate Brewster’s angle for the surfaces air-glass and glass-air. Com-
pare the results. Assume nglass = 1.45!

Answer:
Air-glass: ϕB = 55.4◦

Glass-air: ϕB = 34.6◦

Both angles are connected to each other by Snell’s law of refraction.

4. At Brewsters angle, calculate the polarization degree for the transmitted
light at the surfaces from problem 3. The incident light is supposed to be
unpolarized. Then, calculate the polarization degree of light transmitted
through a glass plate at Brewster’s incidence angle!

Answer: The polarization degree in transmission is defined as∣∣∣∣Ts − Tp

Ts + Tp

∣∣∣∣.
In the absence of absorption, it may be written as∣∣∣∣ Rp − Rs

2 − Rs − Rp

∣∣∣∣.
At Brewsters angle, Rp = 0. A direct application of (6.16) and (6.18)
yields a polarization degree of 0.067 at the air-glass interface and the
same value at the glass-air interface. The polarization degree of a thick
glass plate may be calculated utilizing (7.1). We obtain 0.126 or 12.6%.

5. How many glass plates should be arranged in sequence to achieve a po-
larization degree of 99.9% in transmission, when they are illuminated
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with unpolarized light at Brewster’s angle? Neglect the effect of multiple
reflections of the s-polarized light.

Answer: 30 plates

6. Calculate the characteristic matrices for a quarterwave- and a halfwave
layer!

Answer:

quarterwave layer: M =
(

0 − i
n−in 0

)

halfwave layer: M =
(−1 0

0 −1

)
Remark: In correspondence to the already discussed properties of a
halfwave layer, its characteristic matrix does not contain any informa-
tion about the refractive index of the film.

7. Imagine a normal incidence thin film spectrum like shown in Fig. 7.5.
Which qualitative changes in the spectrum are expected at oblique inci-
dence?

Answer: The interference pattern shifts to shorter wavelength or higher
wavenumbers. For checking, calculate

∂λ

∂ϕ

∣∣∣∣
δ=const.

from (7.15). You should find:

∂λ

∂ϕ

∣∣∣∣
δ=const.

= −λ
sin ϕ cos ϕ

n2 − sin2 ϕ
< 0.

This wavelength shift does not depend on the film thickness and may in
principle be utilized to estimate the refractive index of a single thin film.

Remark: As a consequence of the shift to shorter wavelength, thin film
interference colours depend on the angle of incidence. An interference
filter changes its colour in direction to the blue-violet when being inclined.

8. In (8.10), (8.12), (8.14)–(8.16): Make sure that the dimensions in these
equations are correct. Keep in mind, that the meaning of U and V is
different for different polarizations.

9. In (9.8), an infinitively large number of thickness values is expected to
cause the same resonance frequency of a GWS. Hence, as long as the
effects of the finite grating profile thickness are neglected, the resonance
wavelength does not depend on the interference order j. Consider the
effect of the interference order on the FWHM of the reflectance peak of
a GWS!

Answer: FWHM ∝ 1
dj
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Remark: In full analogy to what we have learned in Chap. 4, the FWHM
is inversely proportional to the ‘lifetime’ of a photon in the waveguide. As
long as there is no absorption in the waveguide, the only chance for a pho-
ton to escape from the waveguide is to suffer diffraction when bouncing
onto the grating. The FWHM is therefore proportional to the bouncing
rate of a guided photon onto the grating, while the latter is inversely
proportional to the thickness of the film.



Part III

Semiclassical Description of the Interaction
of Light with Matter



10 Einstein Coefficients

10.1 General Remarks

Starting from Chap. 10, we will turn to a more precise description of optical
thin film spectra. It will now be our purpose to develop a semiclassical the-
ory of the interaction between light and matter. In this picture, the matter
will be described in terms of quantum mechanical models, while the electro-
magnetic field is described, as before, in terms of Maxwell’s equations. For
our particular subject of thin film spectroscopy, such a treatment has a few
important consequences, namely:

– The dispersion models developed in Chaps. 2– 4 need to be modified. In-
stead of Newton’s equations of motion (classical treatment of matter),
we will now have to solve Schrödinger’s equation to calculate microscopic
dipole moments.

– Having calculated microscopic dipole moments in quantum mechanical
terms, the dielectric function may be calculated in terms of (3.20)–(3.22d).
This will lead us to quantum mechanical expressions for the optical con-
stants, which may then be used to solve Maxwell’s equations.

– The theoretical apparatus developed in Chaps. 6– 9 remains valid, because
it is based on Maxwell’s theory only.

In order to develop the mentioned theoretical description, some basic knowl-
edge on quantum mechanics will be absolutely necessary to the reader. This
concerns Schrödinger’s equation, general properties of the wave function, as
well as simple quantum mechanical models such as the harmonic oscillator,
and perturbation theory. It will be our purpose to apply these theoretical
tools to the treatment of the interaction of electromagnetic irradiation with
matter.

10.2 Phenomenological Description

First of all, we must formulate a suitable physical model. The very simplest
possibility to deal with the radiation-matter subject in quantum mechanics is
to regard a so-called two-level system. The idea is to neglect the multiplicity of
energy levels a real material system might have, and to restrict the attention
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Fig. 10.1. Introduction of Einstein coefficients

to two energy levels only. This makes sense, when the electromagnetic wave
has a frequency close to the eigenfrequency of the subsystem described by
the two energy levels.

A very popular and transparent treatment of the interaction of such a two-
level system with electromagnetic irradiation may be performed in terms of
the so-called Einstein coefficients. It will be the purpose of this chapter to
deal with this treatment.

Let us have a look at Fig. 10.1. It shows two discrete energy levels, E1
and E2. The level 2 corresponds to a higher energy state of the system than
level 1. Simply for unambiguity, let us call the first level a ground state, and
the second one an excited state. In order to describe the interaction between
radiation and the two-level system in terms of Einstein coefficients, we have to
consider three phenomena: absorption, spontaneous emission, and stimulated
emission of light by the two-level system.

Let us assume, that the system is in the first, low energy state. When
the radiation source is switched on, and the radiation frequency is close to
the eigenfrequency of the system, an absorption process of light is expected
to transfer the system from energy level 1 to the level 2 (the quantum sys-
tem becomes excited). Due to energy conservation, this energy gain of the
two-level system must be accompanied by an energy loss of the radiation
field, hence the energy is transferred from the electromagnetic field to the
two-level system. This absorption process becomes more probable when the
electromagnetic irradiation is more intense. The transition rate from level 1
to level 2 by absorption of light is therefore expected to be proportional to:

– The intensity of the irradiation
– The statistical probability to find the system in state 1

Let us now assume, that the electromagnetic field interacts with a large
amount of such two-level systems. Then, a considerably large part of the
energy of the field may be transferred to the assembly of two-level systems.
However, the energy loss of the field is always equal to an integer multiple
of the excitation energy of the two-level systems. In our simple description,
these single portions of light energy that may be absorbed will be called
photons.

We will now consider the case, that the system is in the second (excited)
state. From our experience we know, that within a certain time any excited
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system tends to loose its energy, thus returning back into the ground state.
In order to loose energy, our system has to perform a process that is reverse
to the absorption of light, namely the emission of light. Let us postulate, that
an excited quantum system may loose energy without any stimulation from
outside by the emission of an energy portion of light that exactly corresponds
to the energy difference between the two energy levels. In this case, we speak
on the spontaneous emission of a photon. The transition rate from level 2 to
level 1 by spontaneous emission will be proportional to:

– The statistical probability to find the system in state 2

There is a second mechanism to turn the system from the excited state into
the ground state. We postulate that the system may also perform a so-called
stimulated emission process. This has to be understood as an emission of
light activated by the impinging electromagnetic wave. The transition rate
from state 2 to state 1 caused by this process should be proportional to:

– The intensity of the irradiation
– The statistical probability to find the system in state 2

Of course, any of these elementary processes enters into the resulting full tran-
sition rate with a specific proportionality coefficient. If any of the processes
considered so far turns out to be not necessary, in the further derivations the
corresponding proportionality coefficient would become zero.

As the reader will already have guessed, the mentioned proportionality
coefficients are nothing else than the so-called Einstein-coefficients. It is a
common practice to use the following symbols for Einstein coefficients:

– A21 for spontaneous emission (2 → 1)
– B21 for stimulated emission (2 → 1)
– B12 for absorption (1 → 2)

The next section will deal with a mathematical treatment of Einstein coeffi-
cients, and it will be our purpose to derive – step by step – exact expression
for Einstein coefficients in the dipole approximation.

Finally, Fig. 10.1 gives a schematic representation of all the mentioned
elementary processes. Here, the vertical arrows correspond to the transitions
between ground and excited states, while the sinusoidal structures demon-
strate annihilation or creation of a photon.

10.3 Mathematical Treatment

Commonly, in the philosophy of Einstein coefficients, the electromagnetic
field is characterized by the so-called spectral density of the radiation field
defined as:

u ≡ dE

V dω
(10.1)
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This equation defines the spectral density as the field energy per angular
frequency interval and per volume. In quantum mechanics, it is generally
accepted to use the symbol E for the energy. This may lead to confusion
with the electric field strength, and we will try to avoid any misinterpretations
using suitable subscripts when necessary.

Let us further assume, that we have an assembly of N0 two-level systems,
interacting with the radiation field. Let N1 be the number of systems in the
ground state, and N2 in the excited one. Obviously,

N1 + N2 = N0 = const. (10.2)

Due to the radiation field, the population of the excited state may be changed.
In terms of the mechanisms proposed in Sect. 10.2, the corresponding rate
equation is:

dN2

dt
= N1B12u − N2B21u − N2A21 (10.3)

Corresponding to Fig. 10.1, the first term describes absorption, which leads
to an increase in the population of the excited state. The second term cor-
responds to stimulated emission, and the third one to spontaneous emission,
both resulting in a decrease of the population of the excited state. Of course,
here and throughout this section we can only regard the spectral density at
the frequency corresponding to the eigenfrequency of the two-level system.
Up to now, we have no information how this frequency is connected to the
excitation energy of the system.

Of course, this treatment is not very helpful as long as we are unable
to give explicit expressions for Einstein coefficients. Let us therefore turn to
their determination.

First of all, some interesting information may be obtained regarding the
special case of thermodynamic equilibrium between radiation and matter. In
this situation, dN2/dt = 0, and from (10.3) it follows:

equilibrium:
N1

N2
=

B21u + A21

B12u
(10.4)

On the other hand, in equilibrium conditions Boltzmann’s statistics hold,
resulting in

equilibrium:
N1

N2
= e

E2−E1
kBT (10.5)

where T is now the absolute temperature. From (10.4) and (10.5) in combi-
nation, we obtain an expression for the spectral density of the radiation field
in equilibrium conditions as:

equilibrium: u =
A21

B12

(
e

E2−E1
kBT − B21

B12

) (10.6)
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It is useful to discuss some special cases resulting from (10.6). Let us consider
the case of T → 0. Clearly, in this case, the radiation field at the eigenfre-
quency of the two-level system is vanishing in intensity. In the other extreme
case (T → ∞), it makes sense to assume that the radiation density becomes
infinitively large. If so, from (10.6) we must demand that:

B12 = B21 (10.7)

Hence, the postulation of the stimulated emission appears to be absolutely
necessary to suffice thermodynamics.

In fact, we do not need to rely on our feeling of an infinitively large spectral
density at infinitively large temperatures. Condition (10.7) will be obtained
independently as a result of the following perturbation theory treatment of
quantum transitions.

10.4 Extended Detail: Perturbation Theory
of Quantum Transitions

In order to get information about the mathematical structure of Einstein co-
efficients, it becomes now necessary to apply the mathematical apparatus of
quantum mechanics to the interaction of light with matter. In quantum me-
chanics, instead of a Hamilton function familiar from classical theoretical me-
chanics, we deal with the Hamilton operator. It is obtained from the classical
Hamilton function substituting coordinates and moments by the correspond-
ing quantum mechanical operators. The behaviour of the system is described
by a wavefunction Ψ , obtained as the solution of Schrödinger’s equation:

i�
∂

∂t
Ψ (r, t) = HΨ (r, t) (10.8)

where the wavefunction Ψ depends on the coordinates and on the time. If
the Hamilton operator (or Hamiltonian) does not explicitly depend on time,
then the time independent Schrödinger’s equation follows from (10.8) after
substituting:

Ψ (r, t) = e− i
�

Et × ψ (r)

We obtain:

Hψ (r) = Eψ (r) (10.9)

where E is again the energy. Equation (10.9) represents an eigenvalue prob-
lem, and the time independent eigenfunctions ψn(r) as well as the eigenvalues
En may be obtained solving (10.9). The eigenvalues En have to be regarded
as the allowed energy levels of the system. For simplicity, throughout this
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Fig. 10.2. Quantum transitions

chapter we will assume that the energy levels are generally discrete and non-
degenerated. The quantum number n will often be used to count the energy
levels and wavefunctions, a confusion with the refractive index should not
occur. Furtherly, let us recall that the wavefunctions (or eigenfunctions of
the Hamiltonian) are mutually orthogonal and normalized to the value 1.

The particular problem which will be considered now is sketched in
Fig. 10.2. Imagine a time-independent Hamiltonian H0 with a set of eigen-
functions and corresponding eigenvalues {En}. Consider further, that at a
certain moment, say at t = 0, the system is definitely in the l-th quantum
state and has the energy El.

In this case, the wavefunction Ψl(r, t) suffices Schrödinger’s equation

i�
∂

∂t
Ψn (r, t) = H0Ψn (r, t) (10.10)

while the energy level El is a solution of the eigenvalue problem

H0ψn (r) = Enψn (r) (10.11)

and

Ψl (r, t) = e−i El
�

tψl (r) (10.12)

We will now make the situation more complicated. Let us illuminate the re-
garded system with light. The light source will be switched on at the moment
t = 0. We will now have a completely different situation. The system is no
more described by the time-independent Hamiltonian H0. Instead, the full
Hamilton operator is now given by:

H = H (t) = H0 + V (t) (10.13)

where the certainly time-dependent perturbation operator V describes the
interaction between the light and the system.

Finally, let us switch off the light at t = t0. Again, (10.10)–(10.12) are
valid for the system. The question is: Is there any chance to find the system
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now in a quantum state m different from that which has been occupied at
t = 0? If yes, then we will state that the perturbation V has caused a quantum
transition between the states l and m �= l. It is our task now to understand
the conditions necessary for such a transition.

First of all, let us introduce the common terminology:

– If the probability of the transition l → m is equal to zero, then the
transition is called forbidden with respect to the given perturbation V .

– If the probability of the transition l → m is larger than zero, then the
transition is called allowed with respect to the given perturbation V .

– The recipe which classifies any transition as allowed or forbidden is called
a selection rule.

Clearly, Einstein’s coefficient B12 must be correlated to the transition proba-
bility. In particular, for a forbidden transition, the Einstein coefficient should
be zero.

Let us now turn to the mathematics. We tackle the interesting time in-
terval:

0 < t < t0 .

Because the perturbation may be time-dependent, we have to regard the
time-dependent Schrödinger’s Equation:

i�
∂

∂t
Ψ (r, t) = HΨ (r, t) (10.14)

with the Hamiltonian (10.13). In order to find the solution, the unknown
wavefunction is expanded into a series of eigenfunctions of the unperturbated
Hamiltonian H0:

Ψ (r, t) =
∑

n

an (t) Ψn (r, t) (10.15)

where the expansion coefficients an may also depend on time. According to
the normalization condition, we have:∑

n

|an (t)|2 = 1 (10.16)

The system as described by (10.15) is in a quantum superposition state.
Following the usual interpretation of quantum mechanics, the value

|an (t)|2

has to be understood as the probability to find the system in the n-th quan-
tum state, when the superposition state (10.15) is destroyed as the result of
a measurement procedure.
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It is therefore the time evolution of the expansion coefficients {an} that is
most interesting for us. Substituting the wavefunction in (10.14) by (10.15)
yields:

i�
∂

∂t
Ψ (r, t) = i�

∂

∂t

[∑
n

an (t) Ψn (r, t)

]

= i�
∑

n

Ψn (r, t)
∂

∂t
an (t) + i�

∑
n

an (t)
∂

∂t
Ψn (r, t)

= HΨ (r, t) = H
∑

n

an (t) Ψn (r, t) (10.17)

= H0

∑
n

an (t) Ψn (r, t) + V
∑

n

an (t) Ψn (r, t)

⇒ i�
∑

n

Ψn (r, t)
∂

∂t
an (t) = V

∑
n

an (t) Ψn (r, t)

because for every n we have:

i�
∂

∂t
Ψn (r, t) = H0Ψn (r, t)

Let us now see whether or not the perturbation is able to transfer the system
from state l to state m. We multiply (10.17) from the left side with the
conjugate complex function Ψ∗

m (r, t) and integrate over all coordinates. Due
to the normalization and orthogonality of wavefunctions, we have:∫

Ψ∗
m (r, t) Ψn (r, t) dr = δmn

and therefore, from (10.17) we find:

i�ȧm =
∑

n

an

∫
Ψ∗

m (r, t) V Ψn (r, t) dr (10.18)

As following from (10.12), we may write:

Ψ∗
m (r, t) = ei Em

�
tψ∗

m (r)

Ψn (r, t) = e−i En
�

tψn (r)

Let us introduce the transition angular frequency according to:

ωmn ≡ Em − En

�
(10.19)

Equation (10.18) may then be rewritten as:

i�ȧm =
∑

n

anVmneiωmnt (10.20)
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where the so-called matrix element Vmn is defined as:

Vmn ≡
∫

ψ∗
m (r) V ψn (r) dr (10.21)

Let us now formulate the initial conditions. At t = 0, we require:

|al| = 1 ; an�=l = 0

Particularly, at t = 0 we have am = 0. As long as al is close to one by
modulus, it may be regarded as constant, and a population of the m-th state
would then require:

i�ȧm|t≥0 = alVmleiωmlt �= 0 (10.22)

To fulfil (10.22), it is absolutely necessary that the matrix element Vml is
different from zero. What we have found this way is the general formulation
of a selection rule: Given a perturbation V, it can only cause a quantum
transition between the states l and m when the corresponding matrix element
of the perturbation operator Vml is different from zero.

Let us now regard the concrete case of the interaction of a microscopic
quantum system with light. When the spatial extension of the system is
much smaller than the wavelength, we can neglect the spatial structure of
the wave and regard a homogeneous but oscillating electric field. In that
dipole approximation, the perturbation operator may be written as:

V = −pE = −pE0 cos ωt = −1
2
(
pE0 e−iωt + pE0 eiωt

)
(10.23)

with E as the electric field vector and E0 its amplitude. From (10.22) we find:

am (t) = al
pmlE0

2�

{
ei(ωml−ω)t − 1

ωml − ω
+

ei(ωml+ω)t − 1
ωml + ω

}
(10.24)

which is valid as long as |al| ≈ 1. pml is the matrix element of the dipole
operator. From (10.24) we see that for a dipole transition, it is the matrix
element of the dipole operator that needs to be different from zero. Moreover,
we recognize that the transition frequency ωml plays the role of the resonance
frequency: The closer the frequency of the electric field to one of the transition
frequencies ωml or ωlm is, the more probable the transition becomes.

In order to compare this result to (10.3), we will again assume that we
deal with an assembly of quantum systems (for example atoms or molecules),
while Nl is the number of systems in the l-th quantum state. Moreover, the
transition rate between the states l and m is given by the expression:

dNm

dt
∝ d

dt
|am|2 ∝ |pml|2|E0|2Nl (10.25a)

Interchanging the indices, we obtain

dNl

dt
∝ d

dt
|al|2 ∝ |plm|2|E0|2Nm (10.25b)
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Obviously, when comparing with (10.3), one sees that one of the above rela-
tions (10.25) should correspond to absorption, and the other one to stimulated
emission of light, depending on whether Em > El or vice versa. But the pro-
portionality factors are completely identical, because, due to the hermitecity
of the dipole operator, we have:

|pml|2 = |plm|2

For that reason, the Einstein’s coefficient B12 and B21 must be identical. On
the other hand, from (10.25) it turns out, that

B12 ∝ |p12|2 (10.26)

In fact, this is the most important conclusion for our further treatment of
Einstein coefficients. The second conclusion is, that, according to (10.19),
resonance of the radiation with the two-level system is expected to occur
when the condition:

ω = ω21 ≡ E2 − E1

�
(10.27)

is fulfilled. Correspondingly, the energy of the photon as defined before must
be equal to �ω21.

Finally, let us rewrite (10.6) taking our new findings into account. We
shall write:

equilibrium: u (ω21) =
A21

B12

(
e

�ω21
kBT − 1

) (10.28)

10.5 Extended Detail: Planck’s Formula

10.5.1 Idea

Equation (10.28) describes the spectral density of irradiation in equilibrium
with an assembly of two-level-systems, held at a temperature T . The purpose
of this section is to independently derive an alternative expression for this
spectral density, which might be compared to (10.28), and will therefore give
us an expression for the ratio between the coefficients A21 and B21. The
formula we will obtain is well known as the famous Planck’s formula. We
start with the definition (10.1):

u ≡ dE

V dω

The energy per angular frequency interval may be expressed as the energy
per photon (�ω) with an angular frequency ω, multiplied with the average
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number of photons expected to be excited in a corresponding quantum state
(〈N〉), again multiplied with the number of those quantum states per angular

frequency interval at the relevant frequency (the density of states
dZ

dω
). Hence,

we make use of the approach:

dE

dω
= �ω〈N〉dZ

dω
(10.29)

It is now our task to calculate the single terms encountering into (10.29). Let
us start with the average number of photons 〈N〉.

10.5.2 Planck’s Distribution

In order to obtain an expression for 〈N〉 in the equilibrium case, let us calcu-
late the energy accumulated in a quantum state when a number of N photons
each with an energy �ω is excited. Obviously, its energy will be N �ω. In equi-
librium, the probability w to find the state with N photons excited is given
by Boltzmann’s factor:

w (N) =
xN∑

N

xN
with x ≡ e− �ω

kBT

The average number of photons excited in the quantum state is now calcu-
lated in the usual way:

〈N〉 =
∑
N

Nw (N) =

∑
N

NxN

∑
N

xN
= x

d
dx

ln
∑
N

xN

= x
d
dx

ln (1 − x)−1 =
x

1 − x
⇒ (10.30)

〈N〉 =
1

e
�ω

kBT − 1

Equation (10.30) is known as Planck’s distribution for photons. It is a special
case of Bose–Einstein statistics.

10.5.3 Density of States

What remains to determine is the density of states. Let us start with a
simple one-dimensional problem, namely the one-dimensional movement (for
example along the x-axis) of a particle between two impermeable walls. The
corresponding wavefunction is sketched in Fig. 10.3. Of course, we will further
assume that the moving ‘particle’ is nothing else than a photon.
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Fig. 10.3. Standing wave as solution of Schrödinger’s Equation for a particle be-
tween two walls

When the separation between the two walls is L, it is known from quantum
mechanics that the allowed eigenstates of the system correspond to standing
waves as shown in Fig. 10.3, so that the allowed wavelength-values become:

λn =
2L

nx
; nx = 1, 2, 3, . . . (10.31)

That corresponds to allowed values of the wavevector:

kx =
2π

λ
=

πnx

L
(10.32)

where nx is now a quantum number.
Let us generalize our result to the three-dimensional case. Instead of the

system like shown in Fig. 10.3, we should now imagine a hollow cube with a
volume V = L3, and count the allowed states inside the cube. Accordingly,
we obtain for the wavevector:

k2 = k2
x + k2

y + k2
z =

(π

L

)2 (
n2

x + n2
y + x2

z

) ≡
(π

L
n
)2

(10.33)

Note that the thus defined value n is not a quantum number. For suffciently
high nx, ny, and nz, n may be regarded as a continuous function. In partic-

ular, it is possible to determine the number of states in an n-interval
dZ

dn
.

To do so, let us have a look at Fig. 10.4. It visualizes the n-space occupied
by the states corresponding to n-values between zero and a given maximum
value of n. Each state corresponds to a certain triple of nx, ny, and nz, and
therefore occupies a cube of the volume 1 in the n-space. The volume of the
sphere with the radius n in Fig. 10.4 would therefore correspond to the full
number of states, however, due to the circumstance that nx, ny, and nz shall
not be negative, we should only count the states in the first octant. Hence,
we find for the full number of states Z:

Z =
1
8

× 4π

3
n3 × 2

The factor 2 has been introduced to account for the degeneracy of photons
with respect to their polarization direction.
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Fig. 10.4. To the calculation of the number of quantum states

We therefore have:

Z =
π

3
n3 ⇒ dZ

dn
= πn2 (10.34)

From (10.33) it turns out that

k2 =
ω2

c2 =
(π

L
n
)2

⇒ n2 =
(

Lω

πc

)2

(10.35)

and

dn

dω
=

L

πc
(10.36)

Equations (10.34)–(10.36) in combination finally yield:

dZ

dω
=

dZ

dn

dn

dω
= π

(
Lω

πc

)2
L

πc
=

L3ω2

c3π2 = V
ω2

c3π2 (10.37)

We have now calculated all values that encounter into (10.29). In sum, we
find:

dE

dω
= �ω〈N〉dZ

dω
= �ω

1

e
�ω

kBT − 1
V

ω2

c3π2 = V
�ω3

c3π2

1

e
�ω

kBT − 1

and

u (ω, T ) =
�ω3

c3π2

1

e
�ω

kBT − 1
(10.38)

Equation (10.38) represents Planck’s famous formula for the so-called black-
body irradiation.
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10.6 Extended Detail: Expressions
for Einstein Coefficients in the Dipole Approximation

Equation (10.38) describes the spectral density of electromagnetic irradia-
tion in a hollow cube with walls held at a temperature T in the equilibrium
case. Hence, for any selected angular frequency ω, the absorption of photons
caused by the atoms or molecules of the wall is compensated by the pro-
cesses of spontaneous and stimulated emission of photons by the same atoms
or molecules. This is exactly the situation for which (10.28) has been derived.
Therefore, comparing (10.28) and (10.38), we find an important relationship
between Einstein coefficients, namely:

A21

B21
=

�ω3

π2c3 (10.39)

Therefore, only one of Einstein’s coefficient remains to be determined. In
the forthcoming, we will directly calculate the coefficient A21 making use of
the correspondence principle. But before doing so, let us make one remark
concerning (10.39):

The relation between A21 (efficiency of spontaneous emission processes)
and B21 (efficiency of stimulated processes) turns out to be strongly frequen-
cy-dependent. At low frequencies, the stimulated processes dominate, while
at higher frequencies spontaneous processes become more efficient. The prac-
tical conclusion is, that in infrared spectroscopy (low frequencies) one usually
works with stimulated processes (absorption spectroscopy), while in VIS and
UV-analytics (much higher frequencies), fluorescence spectroscopy has be-
come an utmost important spectroscopic tool.

Let us now come to the derivation of A21 in the dipole approximation.
First of all, we shall remember that the process of spontaneous emis-

sion of light occurs regardless of the presence or absence of an incident light
wave. However, in the philosophy of Sect. 10.3, equation (10.24), no quantum
transitions are allowed to occur when the field strength of the exciting wave
is zero. Hence, our theory as developed so far does generally not allow for
any spontaneous transition processes. Nevertheless these transitions occur in
real life. So what is the reason for the discrepancy between our theory and
experiment?

It turns out, that it is the ansatz for the perturbation operator (10.23)
that is incompatible with the existence of spontaneous quantum transitions
resulting in the emission of a photon. In classical electrodynamics, the energy
of the electromagnetic field is zero in the case of a vanishing field strength. A
complete quantum mechanical treatment (including the quantization of the
field itself) will lead to a somewhat different result. As in the case of the quan-
tum mechanical harmonic oscillator, the electromagnetic field is expected to
have eigenvalues of the energy given by �ω (N + 1/2). As in Sect. 10.5, N
is the number of photons. Note that this expression is different from what
has been assumed deriving (10.30), but one may easily check that this will
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not influence the results obtained in Sect. 10.5.2. In particular, it turns out
that in the absence of photons, the field still has a ground-state-energy of
�ω/2. These “zero-oscillations” of the electromagnetic field in the absence of
photons are the quantum mechanical perturbations that cause the sponta-
neous effects in optical spectroscopy, among them the spontaneous emission
of light.

As mentioned before, we will not derive the mathematical apparatus of
the second quantization in the frames of this book. Instead, we will use a
somewhat different approach that is based on the correspondence principle.
Recalling our knowledge on the structure of Einstein coefficients, from (10.26)
and (10.39) and considering that p = qx we may write:

A21 = C|x21|2 (10.40)

C is a constant, and it may be determined regarding any special case that is
accessible to analytic calculations. Having found C, we may write down the
final expression for Einstein coefficients. We choose the particular case of a
harmonic oscillator and calculate the decay rate of the energy accumulated in
the oscillator, when the latter is allowed to dissipate as a result of the sponta-
neous emission of photons. From the correspondence principle, we may write:

E → ∞ :
dE

dt

∣∣∣∣
classics

=
dE

dt

∣∣∣∣
quantum mechanics

(10.41)

That means, that for sufficiently high energies, the quantum mechanical ex-
pressions shall become identical to the classical ones. From classical electro-
dynamics, we know that:

dE

dt

∣∣∣∣
classics

=
q2

6πε0c3

〈
ẍ2〉∣∣

t
(10.42)

The average is taken over a relevant time period, say the duration of one
oscillation, the latter being performed along the x-axis. For the motion of a
classical harmonic oscillator, we have:

x = x0 cos ωt with E =
mω2x2

0

2
(10.43)

When the amplitude of the oscillation xo does not seriously change during
one period, after averaging from (10.42) and (10.43) we find:

dE

dt

∣∣∣∣
classics

=
q2ω2

6πε0c3m
E (10.44)

Let us now turn to the quantum mechanical case. The energy of the harmonic
oscillator is given by:

En = �ω

(
n +

1
2

)
⇒ En→∞ ≈ �ωn (10.45)
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Any quantum transition from level n to n − 1 leads to an energy decay per
time interval given by (compare (10.3) and (10.40)):

dE

dt

∣∣∣∣
quantum mechanics

= �ωAn.n−1 = �ωC|xn,n−1|2 (10.46)

The matrix elements for the coordinate x of a harmonic oscillator are well
known from quantum mechanics. They are given by:

|xn,n−1|2 =
�n

2ωm
≈ E

2ω2m
(10.47)

That leads us to:

dE

dt

∣∣∣∣
quantum mechanics

=
�CE

2ωm
(10.48)

The constant C may now easily be found combining (10.41), (10.44) and
(10.48). We obtain:

C =
q2ω3

3ε0π�c3

So that from (10.40) Einstein’s coefficient A21 is found as:

A21 =
q2ω3|x21|2
3ε0π�c3 =

ω3|p21|2
3ε0π�c3 (10.49)

The other coefficients follow from (10.39) and (10.7):

B21 = B12 =
π|p21|2
3ε0�2 (10.50)

Expressions (10.49) and (10.50) represent the final expressions for Einstein
coefficients as introduced ins Sect. 10.3, (10.3), in the dipole approximation.

As this was a rather long and complex derivation, it might be helpful to
provide an overview that recalls the main steps of the derivation of Einstein
coefficients. This is done in Table 10.1.

In finishing this section, let us make two final remarks:
Firstly, our derivation was based on the perturbation operator (10.23),

which describes the electrical dipole interaction. Therefore, the resulting Ein-
stein coefficients are only valid in the (electric) dipole approximation. If, for
any reason, that dipole transition is forbidden, nevertheless quantum tran-
sitions may occur as the result of other types of interaction – for exam-
ple magnetic dipole interaction, electric quadrupole interaction and so on.
The corresponding Einstein coefficients may be derived analogously. How-
ever, when the electric dipole transition is allowed, in the non-relativistic
case it is usually much stronger than the other interaction terms, so that it
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Table 10.1. Derivation of Einstein coefficients

Section Equation Result

10.3 (10.3) Introduction/Definition of Einstein coefficients
A21, B21, and B12

10.3 (10.7) B12 = B21 from thermodynamical considerations

10.4 (10.26) From perturbation theory it follows, that
B12 ∝ |p12|2

10.5 Derivation of Planck’s formula

10.6 (10.39) As a consequence of Planck’s formula, we find
A21

B21
=

�ω3

π2c3

10.6 (10.49) Calculation of A21 by means of the correspondence prin-
ciple, basing on the assumption:
A21 = C|x21|2

⇒ Final Expressions: A21 =
ω3 |p21|2
3ε0π�c3 ; B21 = B12 =

π |p21|2
3ε0�2

is often sufficient to regard this first term in the multipole expansion of the
interaction of an electromagnetic wave with matter.

In the absence of incident irradiation (u = 0), the population of the
excited quantum state decays according to (compare (10.3):

dN2

dt
= −N2A21

so that we find:

N2 = N20e−A21t ≡ N20e− t
τ (10.51)

Therefore, the reciprocal value of A21 may be interpreted as the lifetime of an
excited quantum level. Note the similarity between (10.51) and (4.1), (4.2).
In fact, expression (10.49) enables us to estimate the energy decay time as
introduced in Sect. 4.1, and consequently the natural linewidth as long as the
latter is determined by radiative relaxation processes only.

From (10.49) and (10.51), the radiative lifetime of the excited state in a
two-level system in the dipole approximation turns out to be equal to:

τ =
3ε0π�c3

q2ω3|x21|2
=

3ε0π�c3

ω3|p21|2
(10.52)
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For well allowed dipole transitions, (10.52) yields lifetimes of the order of
10−8s. A measurement of these relaxation processes requires the application
of ultrafast spectroscopic tools. On the other hand, the lifetime becomes
infinitively large, when the matrix element of the dipole operator vanishes.
When we excite (by any means) a quantum level that cannot relax into the
ground state via dipole irradiation, then such a state may remain excited for
a considerably long time. Of course, this time will be not infinitively large,
because in fact there are still other relaxation channels than the electric dipole
irradiation. But the lifetime may easily extend for minutes or hours, and this
is the reason for the phosphorescent behaviour of various materials.

10.7 Lasers

10.7.1 Population Inversion and Light Amplification

Let us now come to an utmost important practical application of the theoret-
ical apparatus derived in this chapter so far. From (10.2), (10.3) and (10.7)
we find, that

dN2

dt
= (N1 − N2) (2B12u + A21) − N0A21 (10.53)

In the stationary case, when dN2/dt = 0, we obtain the stationary solution:

(N1 − N2) =
N0A21

2B12u + A21
> 0 ∀u (10.54)

No matter how intense the field is, as long as we deal with a two-level system,
the stationary population of the ground state will always be higher than
that of the excited one. Of course, this conclusion is only true as long as
the excited level may exclusively be populated by optical pumping from the
ground state. In this case, it is impossible to achieve a stationary population
inversion (N2 > N1). On the contrary, for a sufficiently high u, N1 and N2
become nearly equal to each other. In this case, the transition 1 → 2 is called
to be saturated.

On the other hand, a population inversion (if it could be achieved anyway)
would offer prospective physical effects. Let us for a moment assume, that
we prepared the system in a way that N2 > N1 is fulfilled. From (10.53) we
find, that

N2 > N1 ⇒ dN2

dt
< 0.

As long as we have population inversion in a two level system, absorption
and emission processes in sum tend to transfer the system from the excited
to the ground state. This conclusion is particularly true when the spontaneous
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emission processes may be neglected. Consequently, the energy is transferred
from the two-level systems to the radiation field. An incident light beam may
therefore be magnified in intensity when travelling through a medium with
population inversion. The preparation of population inversion is therefore
important for the construction of light amplifiers.

This simple discussion leads us to a very important conclusion on the
structure of the absorption coefficient in quantum mechanics. We must as-
sume, that the absorption coefficient explicitly depends on the population
difference N1 − N2. Particularly, the sign of the population difference is cru-
cial for the decision whether the material is absorbing (positive absorption
coefficient) or amplifying (negative absorption coefficient). In saturation con-
ditions, one should expect that absorption and stimulated emission processes
compensate each other, hence in this case a light beam would travel through
the medium without any damping or amplification. Such a medium appears
to be transparent, and the corresponding absorption coefficient is zero.

10.7.2 Feedback

Let us now assume, that we are able to prepare a two-level system with
population inversion. In practice, the population inversion may be achieved
for example by collisions of electrons with atoms, which transfer the atoms
into an excited state. For example, gas lasers such as the Helium-Neon-laser
work on this principle. Another way is to use three- or four level systems with
optical pumping, as shown in Fig. 10.5.

Fig. 10.5. Three- and four-level systems that allow to create population inversion
by optical pumping. In the three-level-system, population inversion is accomplished
between the first and second state. This is what is done in the ruby laser. In the
four-level-system, one achieves population inversion between the second and third
state (for example in the Neodymium-YAG laser)
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Fig. 10.6. An amplifier with feedback

In our further discussion we will simply assume, that the population in-
version has been achieved anyway. In the terminology of laser physics, such
a medium is called an active medium. Keeping in mind that the absorption
coefficient of an active medium is negative, from Lambert’s law (2.19) we find:

I = I0 e−αx = I0 e|α|x (10.55)

Hence, in an active medium, the intensity of a propagating wave is expected
to exponentially grow in intensity. What we obtain this way is an amplifier
of electromagnetic waves.

In complete analogy to electronics, we only need to add a positive feed-
back to an amplifier in order to build a generator of electromagnetic waves.
That kind of light amplification due to stimulated emission, combined with a
feedback mechanism, leads us to a specific kind of light source that is called
a laser.

Let us have a look at Fig. 10.6. Figure 10.6 sketches the idea of combining
an amplifying element with a feedback mechanism. Let us start from the left
side. We assume an external input, for example an electromagnetic wave.
The action of the amplifying element shall be to magnify the input by a
complex factor B. After passing the amplifier for one time, we obtain an
output according to:

output = B × input , |B| > 1 (10.56)

Let us now discuss what happens when the mentioned feedback mechanism
comes into play. A part of the output (say, the nominal output multiplied
with a constant F , where F is again a possibly complex number with |F | < 1)
is transferred back to the input side, again amplified and so on. Then, in-
stead of the simple output as given by (10.56) we get an effective output
obtained as the result of an infinite number of loops through the amplifier
caused by the feedback mechanism. Mathematically, this may be expressed
in the following manner:

effective output =
[
(1 − F ) + (1 − F ) BF + (1 − F ) B2F 2 + . . .

]
output

= B (1 − F )
∞∑

j=0

(BF )j input ≡ Beff input (10.57)

with Beff = (1 − F ) B
∞∑

j=0
(FB)j =

(1 − F ) B

1 − FB
if |FB| < 1.
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Fig. 10.7. Simple laser geometry

Particularly, (10.57) leads to an infinitively large effective enhancement
factor in the limit BF → 1. In this case, two conditions must be fulfilled:

|B| → ∣∣F−1
∣∣

ϕB + ϕF = 2jπ where j is an integer (10.58)
assuming: B ≡ |B| eiϕB ; F ≡ |F | eiϕF

In the case that the effective enhancement becomes infinitively large, an
arbitrarily small input (for example a single photon, accidentally emitted as
the result of a spontaneous emission process) may lead to a finite effective
output of the system (in our case to electromagnetic irradiation). There is
no contradiction to energy conservation, because the amplifying element (in
our case the active medium) is pumped by an external energy source. Such
a system works as a generator of light and is called a laser. Of course, it will
also generate light when the light amplification defined by B is larger than
the threshold value defined by (10.58).

Consequently, we have to fulfil two conditions in order to construct a gen-
erator of light. First of all, we have to take care that the light amplification is
large enough to compensate any losses of light that leave the system. Tech-
nically, this is accomplished through a sufficiently high population inversion
in the active medium, and the corresponding mathematical criterion is called
the laser condition, but it will not be derived here.

The necessary feedback is usually achieved placing the active medium into
a resonator (the cavity), which may be built up by two parallel mirrors. This
situation looks similar to what has been sketched previously in Fig. 10.3. Let
L be the cavity length. Usually, the active medium does not fill the full cavity,
but extends for a smaller length l. This situation is shown in Fig. 10.7.

Let us now rewrite (10.58) for the special case of the geometry from
Fig. 10.7. Imagine a light wave, that performs one loop in the cavity. Let
us perform the discussion of the light amplification in terms of the light
intensity, and not of the electric field. Performing one loop in the cavity, the



184 10 Einstein Coefficients

wave crosses the active medium for two times, and its intensity will grow by
a factor e2|α|l. On the other hand, at the second mirror some light will escape
from the cavity, so that after one loop, the intensity of the light wave becomes:

I (after one loop) = I0 e2|α|lR2 (10.59)

Equation (10.59) describes an extremely simplified case, because no loss
mechanisms in the cavity have been taken into account. But the principle
is nevertheless clear. The value

√
R2e2|α|l is nothing else than the absolute

value of the product BF as fixed in (10.58). Consequently, for light generation
it is necessary that √

R2e2|α|l ≥ 1 ⇒ e2|α|l ≥ (R2)
−1 (10.60)

is fulfilled.
The condition on the phases may be written in a similarly simple way.

After one loop, according to (10.58), the phase of the wave may have changed
only for an integer multiple of 2π. We thus have:

ϕ (after one loop) = ϕ0 + 2jπ (10.61)

The phase gain is thus equal to 2jπ. On the other hand, in (7.15) we have
already calculated the phase gain for a single loop of a light wave between
two plane interfaces, which turned out to be equal to 4πL/λ in the case that
the refractive index is equal to one. This is clearly a rough simplification, but
it still allows to highlight the main principles of the laser action. Moreover,
possible phase shifts occurring upon reflection at the mirrors will also not be
taken into account.

We therefore find the condition:

2jπ =
4πL

λ
⇒ λ = λj =

2L

j
(10.62)

The conditions (10.60) and (10.62) have to be fulfilled together in order to
get the laser working. Let us therefore analyse their common solutions.

We will start from condition (10.60). It obviously defines a threshold value
for the amplification coefficient which must be exceeded in order to get the
laser work. As the amplification coefficient is wavelength-dependent (instead
of the familiar absorption line, we now have an amplification line), one may
expect that (10.60) defines one or several spectral ranges where the amplifi-
cation coefficient is sufficiently large to achieve light generation. In order to
handle this in a more convenient mathematical way, let us rewrite (10.60) in
the more symbolic manner:

|α| = |α (ω)| ≥ threshold (10.63)

where the generation threshold according to (10.60) is defined by the reflec-
tivity of the second mirror and the length of the active medium. In general,
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Fig. 10.8. Frequency spectrum of a laser. The vertical lines represent the longitudi-
nal resonator modes. Generation may only occur when the amplification coefficient
(solid curve) exceeds the generation threshold (dash). Hence, from the full set of
longitudinal resonator modes only the bold ones constitute the laser spectrum

other loss mechanisms may also be present in the cavity. In this case the
threshold will be enhanced, but the general formulation of criterion (10.63)
remains the same. Of course, the threshold value itself may also depend on
the frequency.

On the other hand, (10.62) defines a series of discrete wavelength values
that are equidistant at the frequency scale as long as the refractive index is
considered to be constant (in our case it is 1 regardless of the frequency).
Indeed, from (10.62) the allowed frequency values may be calculated accord-
ing to:

ωj =
2cπ

λj
= j

cπ

L
(10.64)

where cπ/L is the line spacing in angular frequency units. Equation (10.64)
defines the set of allowed so-called longitudinal resonator modes.

The light frequencies that suffice both criteria (10.63) and (10.64) are
given by a set of discrete lines confined to the frequency region defined by
(10.63). Figure 10.8 sketches this situation in a simplified manner.

In general, we thus have to expect that a laser generates light at a certain
set of different frequencies.

We come to the conclusion, that the laser is a somewhat flexible light
source that may generate light at different frequencies according to its geo-
metrical specifics and the kind of active material. Particularly, a laser may be
specifically designed to meet quite different specifications. If we are interested
in highly monochromatic light, we need to design a laser which generates at
only one well-defined longitudinal resonator mode. If we are, however, inter-
ested in a laser source that generates very short pulses of light, we cannot
work with a single longitudinal mode. The reason is that a short light pulse
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has a broad frequency spectrum (compare with the discussion in Sect. 4.1
and 4.2), and the laser must supply this broad spectrum of light. So that in
practice one needs quite different types and designs of lasers depending on
the concrete application.

The problem is, that the extreme cases of one single mode (high monochro-
maticity) and of a broad spectrum of equidistant resonator modes (necessary
for a short pulse laser) are difficult to be accomplished. On his own, the laser
tends to generate light at several (not necessary adjacent at the frequency
scale) longitudinal modes, which may quickly change with time. The reason
is, that the modes are not independent from each other, because all they are
fed from the same active medium (supposed that the amplification line is not
inhomogeneously broadened). Therefore, the modes compete, and it is some
kind of Darwinian selection between the longitudinal modes that leads to the
“survival of the fittest”. In a resonator like shown in figure 10.7, usually sev-
eral modes may survive. This is caused by the standing wave pattern observed
in such a resonator. As seen from figure 10.3, in such a standing wave there
are nodes and antinodes of the electric field strength. In the spatial region of
antinodes, a strong longitudinal mode tends to transfer the atoms from the
excited level to the ground state due to stimulated emission, thus destroying
the population inversion. As a consequence, many other longitudinal modes
cannot survive. On the other hand, the mode does not affect the population
inversion in the node region, thus giving a survival chance to several modes
that have their antinodes in these regions. Such a resonator construction,
which leads to the formation of standing waves, is therefore not suitable for
the construction of a single mode laser.

Single mode lasers are therefore usually prepared as ring lasers, where
the resonator modes do not form standing waves, but propagate as travelling
waves. In this case, and in the absence of any inhomogeneous amplification
line broadening mechanisms, the competition between the modes may lead to
the survival of only one single mode, such supplying a highly monochromatic
light.

On the other hand, when one has to construct a shortpulse laser, it is
necessary that a large amount of mutually adjacent longitudinal modes be-
comes excited. That may be done modulating the resonator properties with
a frequency that exactly corresponds to the mode spacing cπ/L. The mod-
ulation creates sidebands to the already excited longitudinal modes, which
again become modulated, so that new sidebands are created until the process
comes to an end when a broad spectrum of adjacent modes is excited.

The picture developed in this section is quite simplified, but nevertheless
it should give a qualitative understanding of what is going on in a laser. There
remains one question: What is the connection to thin film optics?

In fact, the resonator shown in Fig. 10.7 is completely analogue to a single
thin film with a negative absorption coefficient. Equations (10.59)–(10.62) are
easily obtained from the thin film equation (7.13), demanding a transmission
T → ∞ (finite output while no input) and setting d = l = L and n = 1.



11 Semiclassical Treatment
of the Dielectric Function

11.1 First Suggestions

In the previous chapter, we’ve got a first idea about the specifics of the
quantum mechanical treatment of the interaction between light and matter.
In particular, we found that the efficiency of that interaction is determined
by at least three factors:

– The square of the absolute value of the matrix element of the perturbation
(in our case the electric dipole) operator (which defines the oscillator
strength).

– The relation between the frequency of the impinging electromagnetic wave
and the energy spacing between the energy levels of the unperturbated
material system which define the resonance frequencies (resonance condi-
tion).

– The population difference of the energy levels involved into the quantum
transition.

In order to get a convenient quantum mechanical description of refraction and
absorption processes in thin film materials, as necessary for any calculations
in thin film optics, the task is now to find a semiclassical expression for
the dielectric function. From that, refractive index and absorption coefficient
would follow according to (2.18).

Qualitatively, we may already guess the correct structure of the quantum
mechanical expression for the dielectric function. We may start from (4.6):

β =
q2

ε0m

M∑
j=1

fj

ω2
0j − ω2 − 2iωΓj

=
3
N

n̂2 − 1
n̂2 + 2

=
3
N

ε − 1
ε + 2

This equation determines the dielectric function in the framework of the
classical theory. In quantum mechanics, we will have to expect that the
resonance frequencies from (4.6) are replaced by the transition frequencies
(10.19), while the f -factors depend on the transition matrix elements as well
as on the population difference. Therefore, starting from (4.6), the structure
of the polarizability and accordingly of the dielectric function may be guessed
according to:
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β ∝ q2

ε0m

∑
l

∑
n>l

|xnl|2[W (l) − W (n)]
ω2

nl − ω2 − 2iωΓnl
=

3
N

ε − 1
ε + 2

(11.1)

Here, it is assumed for simplicity, that the quantum states are counted in a
way that En > E1 is fulfilled. The values W (l) are the statistical probabilities
that the l-th energy level is populated.

To some extent, (11.1) may already be regarded as the final result of this
chapter. Of course, our guess cannot be regarded as a serious derivation, so
that we need to prove that (11.1) is really correct. Even more important,
expression (11.1) cannot be used for absolute calculations, as long as the
proportionality constant is unknown. So that it remains necessary to provide
a relevant derivation of the expression for the dielectric function, and this
will be done in the next subchapters. For those readers who do not want to
go into these details, (11.1) might be sufficient, and the following sections
may be skipped.

In finishing Sect. 11.1, let us make a few remarks concerning (11.1). The
first important fact is, that in (11.1), all allowed quantum transitions may
principally contribute to the polarizability as long as the participating energy
levels are populated and the transition is not saturated. Particularly, in the
case of population inversion we get negative contributions to the polarizability
(light amplification instead of absorption).

Another remark concerns (3.17). In linear optics ((2.4)), the polarizability
as defined by (3.17) should not depend on the electric field strength (otherwise
(3.17) would define a nonlinear dependence of the polarization on the field
strength). Therefore, (11.1) defines a linear polarizability only in the case of
sufficiently low field strength values, so that the impinging light wave does
not affect the population probabilities W (l). As soon as the population of
the quantum states becomes altered by the light intensity, we leave the field
of linear optics and enter that of nonlinear optics.

11.2 Extended Detail:
Calculation of the Dielectric Function by Means
of the Density Matrix

11.2.1 The Interaction Picture

For those readers which are willing to proceed with reading of this chapter in
order to find a complete derivation of the semiclassical expression of the linear
polarizability, we will now have to perform some purely mathematical work
in advance that shall make the further derivation easier and more compact.
Let us therefore introduce the so-called interaction picture.

The formal purpose of this section is to find another writing of Schrö-
dinger’s equation which is more convenient for our particular purposes. As
in Sect. 10.4, we write the Hamiltonian in the following manner:
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H = H0 + V

Where V describes the interaction between the material system and the irra-
diation, while H0 describes the unperturbated Hamiltonian of the material
system. The solution of Schrödinger’s Equation:

i�
∂Ψ

∂t
= HΨ

supplies us with wavefunctions Ψ that are called wavefunctions in the
Schrödinger’s picture. Let us now define the operators U0 and U−1

0 via

U0 ≡ e−i H0t
� ; U−1

0 ≡ ei H0
�

t

(11.2)

ei H0
�

t ≡ 1 + i
H0

�
t + 1

2

(
i
H0

�
t

)2

+ . . .

The wavefunction

Ψw ≡ U−1
0 Ψ (11.3)

is (per definition) called the wavefunction in the interaction picture. We will
understand later why this definition is so convenient.

Of course, in the interaction picture, the wavefunctions shall be orthonor-
malized as well as in Schrödinger’s picture. We therefore find:∫

Ψ∗Ψ d3r = 1 =
∫

Ψ∗
wΨw d3r

So that

Ψ∗
w = Ψ∗U0 (11.4)

holds.
We already know, that matrix elements of several operators will be es-

sential to describe the radiation-with-matter interaction. Let us regard any
arbitrary operator A which acts onto the wavefunction Ψ . In the quantum
state described by Ψ , the quantum mechanical expectation of A is given by:

〈A〉 =
∫

Ψ∗AΨ d3r (11.5)

That expectation corresponds to the result of a physical measurement and
shall therefore be independent on the concrete quantum picture. We therefore
find:

〈Aw〉 = 〈A〉 =
∫

Ψ∗AΨ d3r =
∫

Ψ∗
wAwΨw d3r =

∫
Ψ∗U0AwU−1

0 Ψ d3r

which holds when A reads in the interaction picture as:

Aw = U−1
0 AU0 (11.6)
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Let us finally write down Schrödinger’s equation itself in the interaction pic-
ture. We find:

i�
∂

∂t
Ψw = −H0U−1

0 Ψ + U−1
0 × i�

∂Ψ

∂t
= U−1

0 (−H0Ψ + HΨ) =

= U−1
0 V Ψ = U−1

0 V U0U
−1
0 Ψ =

= V wΨw

i�
∂

∂t
Ψw = V wΨw (11.7)

This is clearly a more compact equation than in Schrödinger’s picture. Par-
ticularly, the wavefunction is only time-dependent when the interaction po-
tential V is different from zero.

11.2.2 Introduction of the Density Matrix

The general idea of calculating the dielectric function is completely analogous
to what has been done in the classical theory. There we started from the cal-
culation of microscopic dipole moments. The obtained expressions have been
compared to (3.17) to find the polarizability. Finally, the dielectric function
has been found from the Lorentz-Lorenz formula.

The entire difference to the quantum mechanical theory is in the method
of calculating the dipole moment. In classical theory, we simply solved New-
ton’s equation of motion for an oscillating charge with a finite mass. In quan-
tum mechanics, the system may be characterized by a wavefunction Ψ , and
the expected dipole moment 〈p〉 has to be calculated according to the recipe:

〈p〉 =
∫

Ψ∗pΨ d3r (11.8)

p is again the operator of the dipole moment. The integration must be per-
formed over all coordinates of the system, which encounter into the wave-
function Ψ .

In fact, the situation is usually more complicated. Let us assume, that
the system which is in interaction with light is nothing else than a molecule
without a permanent dipole moment. Then, 〈p〉 describes the induced dipole
moment of the molecule. The problem is, that the molecule itself is not only
interacting with the external light, but also with its ambient. It is therefore
not obvious that there exists a wavefunction that describes the molecule +
radiation system in terms of only the molecular coordinates and the electro-
magnetic fields. Quite possible, that there exists a more general wavefunction
which additionally depends on a variety of coordinates describing the prop-
erties of the surrounding medium, but such a wavefunction is not helpful for
calculations by means of (11.8).
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For that reason, in the semiclassical theory of the interaction of light
with matter it becomes necessary to find another type of description. This is
also obvious from purely thermodynamical considerations: Any highly excited
molecule tends to loose its energy in order to come into thermodynamical
equilibrium with its surrounding. But as the quantum states described by
(10.11) are not time dependent, relaxation processes cannot be taken into
account this way. As a consequence, the energy levels described by (10.11)
are absolutely sharp, so that optical transitions would be expected to cause
absorption or emission lines with an infinitesimally small linewidth. These
facts are clearly in contradiction with reality, so that relaxation processes
have to be incorporated into our description anyway.

We will not develop a general theory here, but focus on our particular
task. Let us assume at the beginning, that we deal with a material system
that may be described by a wavefunction Ψ depending on the systems co-
ordinates only. Such a system is called to be in a pure quantum state. The
mentioned wavefunction may be expanded into a series of eigenfunctions of
the unperturbated Hamiltonian of the system leading to:

Ψ (r, t) =
∑

n

an (t) ψn (r) (11.9)

The quantum mechanical expectation of the dipole operator follows from
(11.8) and may be written according to:

〈A〉 =
∫

Ψ∗AΨ d3r =
∑

n

∑
m

a∗
nam

∫
ψ∗

nAψm d3r =

=
∑

n

∑
m

a∗
namAnm ≡

∑
n

∑
m

σmnAnm =
∑

n

(Aσ)nn (11.10)

= Tr (Aσ)

The values σnm are called elements of the density matrix of the system in the
given (pure) quantum state. According to (11.10), knowledge of the density
matrix again allows to calculate the quantum mechanical expectation value
for an operator in a given quantum state. Particularly, from the special case
A = 1, we obtain:

1 = Trσ =
∑

n

σnn (11.11)

Per definition (11.10), the diagonal elements of the density matrix σnn are
identical to the probability to find the system in the n-th quantum state as
a result of a measurement procedure.

Let us now find the equation that describes the evolution of the elements
of the density matrix with time. From Schrödinger’s equation, we have:
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i�
∂Ψ

∂t
= HΨ = i�

∑
m

∂

∂t
amψm =

∑
m

amHψm

∣∣∣∣×ψ∗
n ;

∫
d3r

→ i�
∂

∂t
an =

∑
m

Hnmam

i�
∂

∂t
a∗

n = −
∑
m

H∗
nma∗

m = −
∑
m

a∗
mHmn

i�
∂

∂t
σmn = i�a∗

n

∂

∂t
am + i�am

∂

∂t
a∗

n =
∑

l

⎛
⎜⎝Hmlala

∗
n︸︷︷︸

σln

− Hlna∗
l am︸ ︷︷ ︸
σml

⎞
⎟⎠

→ i�
∂

∂t
σmn =

∑
l

{Hmlσln − Hlnσml} = {Hσ − σH}mn

What we have found is the so-called Liouville’s equation for the elements of
the density matrix:

i�
∂

∂t
σmn = {Hσ − σH}mn (11.12)

In the operator language, (11.12) may be written as:

i�
∂

∂t
σ = [H, σ] (11.13)

Let us now come to our concrete problem. We turn to the more complicated
case, that our regarded system interacts with the electromagnetic field of the
light wave as well as with another material system which may be regarded
as the surrounding. In order to simplify the task, we will assume that the
surrounding medium itself does not interact with the electromagnetic wave.

This situation is sketched in Fig. 11.1. It shows the regarded system S
(for example a molecule) and its ambient (system U). The perturbation V
only interacts with the system S. Additionally, system S interacts with its
ambient U via the interaction Hamiltonian HSU . The individual systems S
and U themselves are regarded to be described by the Hamiltonians H0S

and H0U . The full problem shall be described by the Hamiltonian:

H = H0U + H0S + HSU + V

where only the operator V shall explicitly depend on the time.
We will assume, that the pure states of the complete system (S +U) may

be described by the wavefunction Ψ (j) or density matrices σ(j), while j is
a quantum number that counts the quantum states of the complete system.
σ(j) suffices (11.13):

i�
∂σ(j)

∂t
=
[
H, σ(j)

]
(11.14)
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Fig. 11.1. System S interacting with the perturbation V and its ambient U

We will moreover assume, that we know the eigenfunctions of the Hamiltonian
H0S , which are solutions of:

H0Sψn (r) = Enψn (r) (11.15)

Multiplying (11.14) by ψ∗
n from the left and by ψm from the right and inte-

grating over all coordinates, we obtain:

i�
∂

∂t
σ(j)

nm =
[
H, σ(j)

]
nm

(11.16)

In the general case we will not know, what is the actual quantum state of
the complete system (S + U). We might be able to control the behaviour
of our subsystem S, but the behaviour of the environment is difficult to be
handled. Nevertheless, one may find a satisfying mathematical treatment of
the problem intermixing our quantum mechanical treatment with a classical
averaging procedure.

This kind of treatment is particularly evident when we assume that the
system S +U is large enough to be considered as a macroscopic system. Such
systems are successfully described by classical statistical mechanics. We will
therefore assume that we may determine a particular classical probability
w(j) to find the whole system in the quantum state j. The density matrix of
system S, which is definitely not in a pure state (but in a so-called mixed
state), is now defined by the expression:

ρnm ≡
∑

j

w(j)σ(j)
nm (11.17)

Equations (11.17) and (11.16) together yield:

i�
∂

∂t
ρnm = [H, ρ]nm (11.18)
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This is again Liouville’s equation, applied to the density matrix of the system
S in a mixed state. By means of the operators

U0 = e− i
�
(H0S+H0U )t

U−1
0 = e

i
�
(H0S+H0U )t

Equation (11.18) may be transformed into the interaction picture. In com-
plete analogy to the previous subsection, this procedure leads to the elimina-
tion of the Hamiltonians H0S and H0U from Liouville’s equation. We find:

i�
∂

∂t
ρwnm = [V w, ρw] + [HSUw , ρw]nm (11.19)

In the forthcoming we will assume that all operators are written in the in-
teraction picture, so that we skip the index w for simplicity in most cases.

Let us have a closer look at (11.19). Obviously it is the first commutator
that describes the interaction of system S with the electromagnetic irra-
diation. Hence, it should contain information on the light induced quantum
transitions which determine the optical behaviour of our system as if it would
be isolated. On the other hand, the second commutator describes the interac-
tion of the system with the ambient U , which is expected to act as a thermal
reservoir. Hence, it is responsible for the relaxation of the perturbated density
matrix back to thermal equilibrium.

Let us come to the calculation of expectation values. From (11.10) we find:

〈A〉 = Tr (Aσ) =
∑

n

(Aσ)nn

Any of the pure states j is connected to a statistical probability w(j). Per-
forming a classical averaging procedure, we therefore obtain:

〈A〉 =
∑

j

w(j)
∑

n

(
Aσ(j)

)
nn

=
∑

n

(Aρ)nn (11.20)

Again, knowledge on the density matrix will enable us to calculate the nec-
essary expectation values.

Finally, let us understand the sense of the diagonal elements of the density
matrix. From

ρnn =
∑

j

w(j)σ(j)
nn

it follows, that ρnn is the probability to find the system in the n-th quantum
state after having performed a corresponding measurement. If the system is
in thermodynamical equilibrium with its environment, that probability will
be given by:
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ρnn =
e− En

kBT∑
n

e− En
kBT

(11.21)

If the system is in or close to equilibrium with its environment that is held
at temperature T , we may use (11.21) to describe the diagonal elements of
the density matrix.

In the forthcoming, it will be our task to solve (11.19) for selected systems
in order to get knowledge on the density matrix. Having calculated the density
matrix, the expectation value for the dipole operator p is calculated according
to (11.20). After that, we obtain the polarizability according to (3.17). We
may then write down the expression for the dielectric function, so that our
previously formulated task to find a quantum mechanical description of the
linear optical constants will be solved at this point.

11.2.3 Semiclassical Calculation of the Polarizability

We start with the simplest quantum mechanical model system, namely the
two-level system previously discussed in Chap. 10. It will now be our purpose
to find a semiclassical expression for the linear polarizability of such a system.
According to (11.20), the expectation value for the dipole moment is given by:

〈p〉 = Tr (pρ) (11.22)

The elements of the density matrix may be obtained as the solution of Liou-
ville’s (11.19):

i�
∂

∂t
ρnm = [V , ρ]nm + [HSU , ρ]nm (11.23)

where the term [HSU , ρ] describes the interaction between the two-level sys-
tem and its material surrounding. For the two-level system, the operators p
and ρ may be written as:

p =
(

p11 p12
p21 p22

)
; ρ =

(
ρ11 ρ12
ρ21 ρ22

)

The diagonal elements of the dipole operator are assumed to be zero, in order
to exclude permanent dipole moments in the medium. So that from (11.22)
it follows:

Tr (pρ) = 〈p〉 = p12ρ21 + p21ρ12 (11.24)

We find, that it will be necessary to calculate the non-diagonal elements of
the density matrix in order to find an expression for the expectation value of
the dipole moment. Moreover, that expectation value will be definitely zero
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when the matrix element p12 becomes zero. So that the selection rule for elec-
tric dipole transitions previously derived in Chap. 10 is a natural conclusion
from the more sophisticated treatment applied in the present chapter.

In order to solve (11.23), we have to find a suitable expression for the
terms [HSU , ρ]. In accordance to the assumptions on relaxation processes
in the classical picture, we will assume an exponential damping of the free
polarization of the medium. That will be consistent with the assumption:

[HSU , ρ]nm ≡ − i�ρnm

T2(nm)

where T2 is the so-called transversal relaxation time. Let us mention in this
connection, that a corresponding relaxation time may be introduced for the
diagonal elements of the density matrix as well. It will be responsible for
the relaxation of the population of the quantum levels back to equilibrium
and is called the longitudinal relaxation time T1. In relation to the classical
treatment, T2 results in the homogeneous linewidth according to (4.4), while
T1 is responsible for the natural linewidth according to (4.2).

We may now apply (11.23) to our two level case. We have to calculate two
non-diagonal elements of the density matrix, and the corresponding equation
become:

∂

∂t
ρ21 +

ρ21

T2
= − i

�
[V , ρ]21

(11.25)
∂

∂t
ρ12 +

ρ12

T2
= − i

�
[V , ρ]12

As before, the interaction operator V is given by:

V = −pE = −pE = −pE0 e−iωt (11.26)

with E as the electric field strength, optical isotropy assumed. The products
V ρ and ρV are then obtained as:

V ρ = −E

(
p12ρ21 p12ρ22
p21ρ11 p21ρ12

)

ρV = −E

(
ρ12p21 ρ11p12
ρ22p21 ρ21p12

)

so that we find:

[V , ρ]21 = −Ep21 (ρ11 − ρ22)

[V , ρ]12 = −Ep12 (ρ22 − ρ11)

Consequently, (11.25) may be rewritten as:
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∂

∂t
ρ21 +

ρ21

T2
=

i
�
Ep21 (ρ11 − ρ22)

(11.27)
∂

∂t
ρ12 +

ρ12

T2
=

i
�
Ep12 (ρ22 − ρ11)

According to (11.6), the matrix elements of the dipole operator must be
time-dependent in the interaction picture. From the transformation recipe:

Aw = U−1
0 AU0 = ei H0St

� Ae−i H0St

�

it follows, that the matrix elements of an operator A in the interaction picture
may be written as:

Awnm =
∫

ψ∗
nei H0St

� Ae−i H0St

� ψm d3r = eiωnmtAnm (11.28)

when ψn and ψm are eigenfunctions of H0S as previously postulated. There-
fore, the nondiagonal matrix elements of p that occur in (11.27) have a time-
dependence according to (11.28). Moreover, the electric field is also time-
dependent according to (11.26). It makes therefore sense to assume, that the
non-diagonal elements of the density matrix are oscillating in time following
the dependence:

ρ12 = P12ei(ω12−ω)t

ρ21 = P21ei(ω21−ω)t

where P12 and P21 are constants. This approach is reasonable as long as the
field is sufficiently weak, so that it does not alter the diagonal elements of the
density matrix, which determine the population of levels 1 and 2. In other
words, the diagonal elements shall not change with time. We then obtain for
the density matrix:

ρ21 =
Ep21

�

ρ11 − ρ22

ω21 − ω − iΓ

ρ12 =
Ep12

�

ρ11 − ρ22

ω21 + ω + iΓ

Γ ≡ T−1
2

and for the dipole moment

〈p〉 = p12ρ21 + p21ρ12

=
|p12|2E

�
(ρ11 − ρ22)

[
1

ω21 − ω − iΓ
+

1
ω21 + ω + iΓ

]
(11.29)

=
|p12|2E · 2ω21 (ρ11 − ρ22)

�
· 1
ω2

21 + Γ 2 − ω2 − 2iωΓ
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Caused by the assumed exponential decay of the free polarization, we find
the familiar Lorentzian in the expression for the dipole moment.

We have not yet discussed the diagonal elements of the density matrix
occurring in expression (11.29). We only postulated that they are time-
independent. On the other hand, as we are searching for an expression for
the linear polarizability, we shall require that (11.29) is linear in the elec-
tric field strength. Consequently, the diagonal elements of the density matrix
shall not depend on the electric field applied. It is therefore reasonable to
assume that they are equal to the equilibrium values which would be valid
when no electromagnetic field is applied and the system is in equilibrium with
its environment. We denote these values by a superscript ‘(0)’, they may be
calculated in terms of (11.21).

From the material equation:

p = ε0βE

we find:

β =
|p12|2
ε0�

· 2ω21

(
ρ
(0)
11 − ρ

(0)
22

)
ω2

21 + Γ 2 − ω2 − 2iωΓ
(11.30)

where
(
ρ
(0)
11 − ρ

(0)
22

)
denotes a field-independent population difference. Note

the similarity between (11.30) and the previously guessed expression (11.1). If
more than two energy levels have to be considered, (11.30) may be generalized
according to:

β =
∑

l

∑
n>l

|pnl|2
ε0�

× 2ωnl ×
(
ρ
(0)
ll − ρ

(0)
nn

)
ω2

nl + Γ 2
nl − ω2 − 2iωΓnl

(11.31)

Equation (11.31) gives the general semiclassical expression for the polarizabil-
ity of a quantum system with discrete energy levels. Given the polarizability,
the dielectric function and the optical constants follow from (3.25).

In Chap. 5, problem 10, we obtained a temperature dependent refractive
index of an optical material with voids, that may partially be filled with wa-
ter depending on the temperature. That was a rather extrinsic temperature
effect. On the other hand, (11.31) in combination with (11.21) describes a
rather intrinsic temperature dependence of an optical material, because the
population of the individual energy levels will be influenced by the tempera-
ture. Moreover, the linewidth values in (11.31) are also temperature depen-
dent, usually the lines become broader with increasing temperature. Hence,
in a real optical thin film material, there may be several physical mechanisms
that alter the optical constants with temperature, and the question whether
the refractive index increases or decreases with temperature will depend on
which of the mechanisms is the dominant one.
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12.1 Formal Treatment of the Dielectric Function
of Crystals (Direct Transitions)

It cannot be the purpose of the present chapter to provide the reader with the
complete theory of electronic properties of solids, and to derive the theory
of optical transitions in solids from there. For that, the reader is referred to
the textbooks on solid state physics. Instead, we will assume that the reader
is familiar with the general ideas of solid state physics. Particularly, basic
knowledge on the band structure of crystalline solids is assumed as well as
on phonons, or excitons.

In the first section, we will try to apply the treatment from the previous
chapter to the specifics of optical constants of solids. We will find an expres-
sion for the dielectric function that appears to be a special case of the general
expressions found in Chap. 11. From there we have (11.31):

β =
2

ε0�

∑
l

∑
n>l

|pnl|2ωnl
[ρ(0)

ll − ρ
(0)
nn ]

ω2
nl + Γ 2

nl − ω2 − 2iωΓnl
.

Let us start with the case of a crystal. As it is known from solid state physics,
a single electron moving in a periodic potential (single electron approxima-
tion) has a continuous spectrum of energy eigenvalues instead of the discrete
energy levels discussed so far. Moreover, the electron energy is a continuous
function of the wavevector of the electron k. This is a direct consequence of
the translational symmetry in the atomic arrangement, as it is per definition
characteristic for a crystal. In crystal physics, one therefore speaks on energy
bands instead of energy levels. The general theoretical considerations given
below are applicable to different kinds of crystals, no matter whether they
represent insulators, semiconductors, or metals. Nevertheless, we will often
use a terminology which is typically applied in the field of semiconductors.
The reason is simple. The electronic transitions which are detected in optical
spectroscopy do usually occur between the valence and the conduction bands
of a crystal. Good insulators have usually a broad energy spacing between
these bands, so that they may be regarded as transparent in the NIR/VIS
regions. On the contrary, the absorption on-set wavelength in semiconduc-
tors is considerably larger, so that the shape of the absorption bands has
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to be taken into account when performing optical spectroscopy with semi-
conductors. Therefore, in many cases we will apply a terminology which is
usually relevant in semiconductor optics with regard to transitions between
the valence and the conduction bands.

Caused by the mentioned band structure, we cannot further work with
discrete energy levels En as assumed in the Chaps. 10 and 11, but have to
replace them by the functions En(kn):

En → En (kn) .

The quantum number n is now to count the energy bands instead of the en-
ergy levels. Accordingly, the transition frequencies (10.19) have to be replaced
according to:

ωnl =
En − El

�
→ En (kn) − El (kl)

�

Thus, absorption of light may cause an electron from the l-th energy band
and an initial wavevector kl to perform a quantum transition into the n-
th energy band. In general, its wavevector may also change to kn due to
quasimomentum conservation. As long as l �= n holds, such transitions are
called interband transitions. If l = n, we have an intraband transition, because
the initial and final quantum states belong to the same energy band.

In the case of so-called direct transitions (no phonon creation or annihi-
lation), we have

kl ≈ kn ≡ k ⇒ En (kn) − El (kl)
�

=
En (k) − El (k)

�
≡ ωnl (k) .

The reason is, that in optics, the light wavelength is much larger than the
period of the crystalline lattice, so that the light wavevector is negligible when
comparing with the dimension of the Brillouin zone. Direct transitions are
vizualized in a zone diagram as vertical arrows, see Fig. 12.1. Please note that
direct transitions may only occur as interband transitions. On the contrary,
any intraband transition must be indirect (kn �= kl), as it may easily be
guessed from Fig, 12.1. In more general, the quasimomentum does not need
to be conserved in the strong sense of a momentum, but may change for any
integer multiple of the reciprocal lattice vector. The corresponding transitions
are called Umklapp processes, but are not discussed in our treatment here.

Similar to the transition frequencies, the other values encountering into
(11.31) also depend on the electron wavevector, although the dependence
may be weak. Let us further recall, that the electron wavefunctions in a
periodic potential are delocalized. Then, the moving electron may rather feel
the medium electric field than the local one (compare Table 3.2). In such
cases, a treatment in terms of the Lorentz-Lorenz formula does not make
sense. We therefore assume:

ε = 1 + Nβ.
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Fig. 12.1. Direct transitions between the l-th and the n-th energy band (interband
transitions), a is the lattice period

However, due to Pauli’s principle, any quantum state can only be occupied
by a single electron. Summarizing over all occupied quantum states does
therefore automatically sum up over the electrons. We find:

ε (ω) = 1 +
2

ε0�

∑
k

∑
l

∑
n>l

[ρ(0)
ll (k) − ρ

(0)
nn(k)]|pnl(k)|2ωnl(k)

ω2
nl(k) + Γ 2

nl(k) − ω2 − 2iωΓnl(k)
(12.1)

= 1 +
1

4π3ε0�

∫
d3k

∑
l

∑
n>l

[ρ(0)
ll (k) − ρ

(0)
nn(k)]|pnl(k)|2ωnl(k)

ω2
nl(k) + Γ 2

nl(k) − ω2 − 2iωΓnl(k)

In deriving (12.1), we made use of the transformation:∑
k

→ 1
(2π)3

∫
d3k .

Equation (12.1) represents the expression for the electronic contribution to
the dielectric function of a crystal, as long as only direct transitions are
involved. Moreover, in the present form it is only valid in a single electron
picture, without any effects caused by Coulomb’s interaction between the
electrons. In solids with well-filled electronic bands, of course, Fermi-Dirac
statistics have to be applied for the calculation of the diagonal elements of
the density matrix rather than Boltzmann’s statistics.

In solid state physics, it is common to regard the transition matrix element
of the electron momentum rather than of the dipole moment (as we do). In
this case, (12.1) holds as well, but there is an additional pre-factor of (e/mω)2.
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Let us look at a few examples in order to get an idea on the shape of the
dielectric function as described by (12.1). Let us regard the contribution of
an interband transition between the l-th and the n-th band to the dielectric
function. For simplicity, we will assume that the l-th band is nearly completely
filled (ρ(0)

ll ≈ 1 ∀k; this might be the valence band of a semiconductor), while
the n-th band is essentially empty (ρ(0)

nn = 0 ∀k; this might be the conduction
band). In a band scheme like sketched in Fig. 12.1 (and assuming isotropy),
the resonance frequency might then be given by:

ωnl(k) =
1
�

[
Eg +

B

2
(1 − cos ka)

]
(12.2)

where Eg marks the direct band gap, and B is a constant that characterizes
the band width. Let us further neglect the k-dependence of all the other val-
ues encountering into (12.1). Then, the contribution of the l → n transition to
the dielectric function of the system may be directly calculated performing
a numerical integration in (12.1). It is interesting to perform this calcula-
tion with different assumed values of the bandwidth B and the homogeneous
linewidth Γ . Two examples are given in Fig. 12.2. In the case that B � Γ ,
the band structure does not give any effect, and the imaginary part of the
dielectric function appears as a typical Lorentz-line as known from the clas-
sical picture or the quantum mechanical treatment of systems with discrete
energy levels. On the contrary, when the homogeneous linewidth is negligible
compared to the bandwidth B, the imaginary part of the dielectric function
shows a sharp on-set at �ω = Eg (the so-called absorption edge). Conse-
quently, optical measurements may be used to determine the direct band gap
in crystalline solids by means of the absorption behaviour. For �ω > Eg, the
imaginary part of the dielectric function increases like

Imε ∝ √
�ω − Eg ,

a behaviour that is typical for allowed electronic transitions in the vicinity
of a direct band gap. In Sect. 12.2, this behaviour will be reproduced and
explained in a less formal manner.

On the other hand, it is interesting to check the behaviour of the dielectric
function depending on the dimensionality of the system. Figure 12.2 clearly
corresponds to the three-dimensional case (3D), and has been calculated in
spherical coordinates according to:

3D : d3k = dkxdkydkz → 4πk2dk

The same calculation may be carried out for the 2D and 1D cases. We obtain:

2D : d2k = dkxdky → 2πkdk

1D : dk = dkx → dk
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Fig. 12.2. Shape of the imaginary part of the dielectric function as calculated
from (12.1) and (12.2), assuming Eg = 3 eV: solid : B = 1 eV, Γ = 1 cm−1; dash:
B = 0.01 eV, Γ = 300 cm−1

Fig. 12.3. Shape of the imaginary part of the dielectric function in the vicinity of
the absorption edge, as calculated from (12.1) and (12.2). Solid : 3D; dot : 2D; dash:
1D. Eg = 3e V; B = 1 eV; Γ = 1 cm−1

Figure 12.3 illustrates the shape of the imaginary part of the thus given
dielectric function in the vicinity of the absorption edge.

It is obvious, that the dependence

Imε ∝ √
�ω − Eg

is only valid for the three-dimensional case. In the two-dimensional case, we
rather find Imε ∝ const., while in the the one-dimensional case

Imε ∝ 1√
�ω − Eg

holds.
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The mentioned behaviour of the dielectric function for a two-dimensional
motion of an electron in a periodic potential is essential for the theory of so-
called quantum well structures or superlattices. The one-dimensional case is
practically relevant in so-called quantum wires. Particularly, the singularity at
the direct gap is of practical importance to achieve a high oscillator strength
necessary for luminescent devices.

12.2 Joint Density of States

Let us now come to a more qualitative understanding of the physics behind
(12.1). It will be the purpose of this section to provide the reader with a
simple and transparent derivation of the spectral shapes demonstrated in the
Figs. 12.2 and 12.3. On a rather intuitive level, it is clear that the imaginary
part of the dielectric function should be proportional to the square of the
transition matrix element of the dipole operator, multiplied with the density
of quantum states D which contribute to the transition at the given transition
frequency. We write:

Imε ∝ D (ωnl) |pnl|2 (12.3)

Let us again concentrate on the case of direct transitions, so that the electron
wavevector does not change as a result of the quantum transition. Then, ωnl

is given by the energy spacing between two bands at the same wavevector,
and we obtain:

Imε ∝ D[En (k) − El (k)] |pnl (k)|2

As in Sect. 12.1, let us at the beginning assume that the transition matrix
element is constant and different from zero. In this case, the behaviour of the
dielectric function is determined by the density of pairs of quantum states,
which have the same wavevector and are separated from each other by a given
suitable energy spacing. We will call this density of states a joint density of
states, because it depends on features of both energy bands that are partici-
pating in the quantum transition.

Let us have a closer look at the argument of the not yet quantitatively
defined value D. For a band structure like shown in Fig. 12.1, the argument
En(k) − El(k) looks like sketched in Fig. 12.4. In semiconductor physics, the
minimal value of En(k)−El(k) is called the direct gap of the semiconductor,
when the two mentioned bands are associated with the valence and conductive
bands, respectively.

Let us imagine, that a system characterized by a En(k)−El(k) behaviour
as given by Fig. 12.4 is illuminated with light of a sufficiently low frequency
so that �ω < Eg is fulfilled. There will clearly be no absorption of light. A
rather sharp absorption onset is expected at �ω = Eg, which corresponds to
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Fig. 12.4. Energy spacing between the bands from Fig. 12.1 as a function of the
electron wavevector

transitions in the centre of the Brillouin zone (k = 0). The reason is, that at
k = 0, the derivative

d[En (k) − El (k)]
dk

= 0

as well. Consequently, a large amount of pairs of quantum states becomes
involved into the optical transition, which usually leads to sharp features in
the optical absorption spectrum. The same is valid for the k-values ±π/a.

We come to the conclusion, that the main features in the imaginary part
of the dielectric function are determined by the behaviour of the derivative

d[En (k) − El (k)]
dk

.

Particularly, the points where this derivative is equal to zero, are called van-
Hove-singularities.

Let us now derive a quantitative expression for the joint density of states.
The number of quantum states in a given k-interval is given by:

dZ =
2V

(2π)3
dkxdkydkz

The factor 2 has been introduced to account for the degeneracy of quantum
states with respect to the electron spin. In spherical coordinates (which makes
sense in optically isotropic materials) we find:

3D : dkxdkydkz = 4πk2dk ⇒ dZ =
8πk2V

(2π)3
dk

(12.4)

=
V k2

π2
d
[
En (k) − El (k)

]
dk

d[En (k) − El (k)]
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The density of states D(k) is then given by:

dZ ≡ D(k)dk ⇒ D(k) =
V k2

π2

In full analogy, the joint density of states D[En(k)−El(k)] will be defined as:

dZ = D
[
En (k) − El (k)

]
d
[
En (k) − El (k)

]
(12.5)

Comparing finally (12.4) and (12.5), we find the expression:

D[En (k) − El (k)] =
V k2

π2
d
[
En (k) − El (k)

]
dk

(12.6)

Expression (12.6) is obviously only valid in the three-dimensional case. It
really shows a singular behaviour at the van-Hove singularities. In general, it
is determined by the particular band structure valid for the material under
consideration.

Let us now regard the case of Fig. 12.4. At k → 0, we obviously have:

En (k) − El (k) = Eg + const. × k2 = �ω

Consequently,

k ∝ √
�ω − Eg

and

d
[
En (k) − El (k)

]
dk

∝ k ∝ √
�ω − Eg

We obtain from (12.6):

D
[
En (k) − El (k)

] ∝ √
�ω − Eg; �ω > Eg (12.7a)

which is valid in the three-dimensional case for light frequencies slightly above
the absorption edge. According to (12.3), we have therefore to expect that the
shape of the imaginary part of the dielectric function resembles the square
root of �ω − Eg, which explains the behaviour of the solid lines in Figs. 12.2
and 12.3.

The same type of discussion may be performed for the 2D and 1D cases.
That may be easily done by the reader himself. We find (�ω > Eg):

3D: d3k = dkxdkydkz → 4πk2dk⇒D
[
En (k) − El (k)

] ∝ √
�ω − Eg

2D: d2k = dkxdky → 2πkdk ⇒D
[
En (k) − El (k)

] ∝ const.

1D: dk = dkx → dk ⇒D
[
En (k) − El (k)

] ∝ 1√
�ω − Eg

(12.7b)

We find, that the different curves in Fig, 12.3 resemble nothing else than the
shape of the joint density of states in the relevant dimensionality.
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Fig. 12.5. Excitonic absorption in the region of the absorption edge of a direct
semiconductor

As it has been mentioned at the beginning of this section, we assume that
the transition matrix element as fixed in (12.3) is different from zero and does
not strongly depend on the value of the electron wave vector k. This is true
for the so-called allowed electronic transition.

We will now regard a somewhat different case with the confusing name of
forbidden electronic transitions. In crystal optics, that means that the tran-
sition is forbidden in the centre of Brillouin’s zone (at k = 0), but becomes
allowed for k-values different from zero. Quite formally, the transition matrix
element may be expanded into a power series according to:

pnl (k) = pnl (0) +
∂pnl (0)

∂k
k + ...

In the case of a forbidden transition, pnl(0) = 0, and for k → 0 it follows,
that

pnl (k) ∝ k.

In this case, (12.3) leads to a dependence:

Imε ∝ D
[
En (k) − El (k)

]
k2 ∝ √

�ω − Eg
3
; �ω > Eg (12.7c)

which is again valid in the three-dimensional case.
So far, our discussion has only concerned the optical response of a sin-

gle electron, moving in a periodic potential. We will not deal with a many-
electron theory which allows to consider the effects caused by the Coulomb-
interaction between the electrons. But our knowledge obtained so far is suffi-
cient to account for one additional effect which is most important in semicon-
ductor optics: Imagine the situation sketched in Fig. 12.1. An electron that is
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excited from the l-th (the valence) band to the n-th (the conduction) band
is well-known to leave a hole in the valence band. In their respective bands,
both the created conduction electron and the hole are expected to move with
a group velocity determined by the first derivative of the band energy with
respect to the wavevector. In the general case, these velocities are different,
so that the electron and the hole are immediately separated from each other.
However, at the band edges, the group velocities are identical, so that the
electron and the hole remain spatially close to each other and form a new
quasiparticle, a Wannier–Mott-exciton. Similar to a hydrogen atom, such an
exciton has Rydberg-like energy levels, which contribute to the optical ab-
sorption behaviour of the semiconductor. As a consequence, there appear
sharp absorption lines in the region of the absorption edge, corresponding to
the excitation of different excitonic energy levels, as exemplified in Fig. 12.5.

12.3 Indirect Transitions

So far, we have only considered direct transitions. In semiconductor practice,
it appears that many of the semiconductors belong to the class of indirect
semiconductors. In an indirect semiconductor, indirect interband transitions
between the valence and the conduction bands may occur at photon energies
which are lower than the direct gap defined in the previous section. In other
words, a semiconductor is indirect, when the condition:

indirect gap Eg,ind ≡ min [En (kn) − El (kl)] |kn �= kl

< min [En (kn) − El (kl)] |kn= kl

≡ direct gap Eg

is fulfilled. Such a situation is shown in Fig. 12.6.
Let us now look how the absorption shape at an indirect gap looks like.
The main difference to the previously discussed case of direct transitions

is in the violation of electron quasimomentum conservation. Indeed, when
the absorption of light is accompanied by the generation or annihilation of
one or several phonons, the electron wavevectors in the initial and final states
may significantly differ from each other. Neglecting the light wavevector, the
quasimomentum conservation yields:

kn − kl ≈ ±
∑

kphonon (± reciprocal lattice vector)

Additionally, energy conservation leads to:

En − El = �ω ±
∑

Ephonon

Here, the sign “+” corresponds to phonon annihilation, while “−“ denotes
phonon creation. Due to the violation of electron quasimomentum conser-
vation, the joint density of states is no more significant for the quantitative
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Fig. 12.6. Band structure of an indirect semiconductor

description of the absorption process. Instead, it is reasonable to consider the
convolution of the densities of the initial and final quantum states, regardless
on the quasimomentum. Hence, instead of (12.3), we make use of:

Imε ∝ |pnl|2
∞∫

−∞
Dl (E)Dn

(
E + �ω ±

∑
Ephonon

)
dE (12.8)

where D is the usual density of states in the corresponding band as indicated
by index in (12.8). Again, near the extremal values of the E(k) dependence
as shown in Fig. 12.6, the energy behaves proportional to the square of the
wavevector. In analogy to the treatment in the previous section, we suppose:

dZ = D (k) dk

=
D (k)
dE

dk

dE ≡ D (E) dE ⇒ D (E) ∝ k (E)

⇒ Dl (E) ∝ √−E ; E < 0

Dn (E) ∝ √
E − Eg,ind ; E > Eg,ind

Then, from (12.8) we obtain:

Imε ∝
Eg,ind−�ω∓∑

Ephonon∫
0

√−E
√

E − Eg,ind + �ω ±
∑

Ephonon dE ;

�ω > Eg,ind ∓
∑

Ephonon
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We do not need to calculate this integral exactly. The only thing we need to
know is the frequency dependence of the dielectric function. Performing the
substitution:

−z = −Eg,ind + �ω ±
∑

Ephonon

we find

Imε ∝
z∫

0

√
Ez − E2 dE

The integrand itself represents half a circle with the diameter z, centred at
z/2 on the abszissa. Hence it includes an area that is proportional to z2.
Consequently, the integral itself is proportional to z2, and we find for the
dielectric function:

Imε (ω) ∝
(
�ω − Eg,ind ±

∑
Ephonon

)2
; �ω > Eg,ind ∓

∑
Ephonon (12.9)

We see, that (12.9) is different from the expressions (12.7a) and (12.7c), valid
for the direct transitions.

In the next subsection, we will turn to another important class of solids,
namely amorphous solids. Let us therefore shortly resume what we have
learned about crystalline solids and their optics so far.

The main point is, that instead of atomic or molecular energy levels, in
solid state physics we deal with energy bands. In crystal physics, these energy

Fig. 12.7. Optical transitions in a crystal
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bands are described by a E(k) dependence. As in molecules, an electronic ex-
citation may be accompanied by excitation of vibrational degrees of freedom,
which gives rise to the division of optical transitions in a crystal into di-
rect and indirect transitions. Both types of transitions differ from each other
in their energy balance and the shape of the absorption structure near the
absorption on-set. Figure 12.7 is to summarize these considerations.

12.4 Amorphous Solids

12.4.1 General Considerations

Let us now come to another kind of solids, namely amorphous solids. Gener-
ally speaking, amorphous solids lack long-range order in the atomic arrange-
ment (which is characteristic for crystals), while short-range order is present.
Optical glasses are prominent examples for the application of amorphous
solids as optical materials.

It should be pointed out that amorphous solids shall not be confused with
completely disordered matter. A snapshot of the atomic positions in a dilute
gas will yield a picture that entirely corresponds to a disordered system, and
clearly lacks even short-range order. On the other hand, in an amorphous
solid, the mentioned short-range order is of great importance for its electrical
and optical properties. Richard Zallen mentioned a very simple and helpful
thought experiment to distinguish between an amorphous solid and a dis-
ordered system: Imagine a man with a bad memory (surely not a reader of
this book), who removes exactly one atom from an amorphous structure and
from a disordered system. Some days later he wants to reinsert the atoms into
their correct positions. Clearly, he has forgotten from where the atoms have
been taken. But no doubt, a glance on the positions of the remaining atoms
in the amorphous structure will enable him to identify the former neighbours
of the removed atom, so that he will reinsert the atom approximately at the
right place. In a disordered system, however, the remaining atomic positions
will give no clue about the missing one, and he will not be able to identify
the former position.

In practice, amorphous solids may be identified from the radial distribu-
tion function (RDF) of their atoms, as experimentally determined for exam-
ple by electron diffraction pattern. In a real crystal at finite temperature, the
RDF shows well-defined peaks out to about a dozen of coordination shells.
In a disordered system, peaks are generally absent, but the RDF shows a
smooth parabolic increase with interatomic distance. In an amorphous solid,
the RDF shows a few peaks, corresponding to the first, second, and maybe
third neighbour distances, before it merges to the structureless behaviour of
a disordered system like a dilute gas. An amorphous solid therefore resembles
some of the properties of its crystalline counterpart (namely those which are
determined by the short range order), while the properties basing on the long
range order will not be found in amorphous solids.
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Fig. 12.8. Possible shape of the density of states in an amorphous semiconductor

These general considerations may serve here as an introduction into the
specifics of the optical properties of amorphous solids. For the same reasons as
in the previous chapters, we will concentrate on amorphous semiconductors,
as important for example for solar cells.

In an amorphous solid, the interatomic distances are comparable to those
in a crystal. Therefore, the spatial overlap of the atomic electronic wave-
functions gives rise to the formation of broad energy regions with allowed
electron energy values, similar as in a crystal. On the other hand, the ab-
sence of translational invariance in the atomic arrangement does not allow
one to use Bloch’s theorem for the description of the electronic wavefunctions.
This has several consequences:

– Although there are broad regions of allowed electron energy values, there
is no E(k)-dependence as in crystals. Nevertheless it is common to speak
of energy bands in amorphous semiconductor theory.

– Despite the delocalised electronic states characteristic for a periodic po-
tential, there may be localized electronic quantum states as well (Ander-
son localization). They may deeply extend into the forbidden zone (not
shown in Fig. 12.8).

– There is no quasimomentum conservation in optical transitions.
– There is no joint density of states.

Nevertheless, we may introduce a conventional density of states defining:

dZ ≡ D (E) dE

where dZ again is again the full number of quantum states in the given
E-interval. In amorphous semiconductor physics, there exist several models
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to describe the density of states in the region of the valence and conduction
bands. Figure 12.8 shows an example for the density of states in the vicinity of
the energy gap between the valence and conduction bands. It is characteristic,
that in the vicinity of the band edges, the electronic states are spatially
localized (grey regions in Fig. 12.8). An electron in such a quantum state has
only a small mobility, so that EC and EV are called mobility edges, while the
value of EC − EV marks the so-called mobility gap. It is utmost important
for the description of electrical properties of an amorphous semiconductor.

Concerning the optical properties (particularly the absorption of light), in
a system like shown in Fig. 12.8, we have to distinguish two entirely different
cases:

1. both the initial and final states of the quantum transition are spatially
localized

2. at least one of the participating quantum states is delocalised.

For a non-vanishing transition matrix element, it is necessary that the wave-
functions of the initial and final quantum states are spatially overlapping
(see formula 10.21). This is automatically fulfilled for quantum transitions
which involve delocalised states. However, for localized quantum states, this
requirement may make a quantum transition impossible even if the energy
spacing between the states is suitable.

One should therefore expect that the transitions, which involve delocalised
quantum states, give more intense contributions to the full absorption spec-
trum than the transitions between localized states.

The calculation of the imaginary part of the dielectric function follows
the philosophy from Sect. 12.3 (indirect transition). The absence of electronic
quasimomentum conservation makes (12.8) applicable:

Imε ∝ |pnl|2
−�ω∫
0

DV (E)DC (E + �ω) dE (12.10)

Let us assume, that the light frequency is high enough to induce transitions
from the valence band far into the conduction band. We will consequently
regard a structureless conduction band, that may be described by a step-
function according to:

DC (E) ∝ θ (E − EC) ⇒ DC (E + �ω) ∝ θ (E − EC + �ω)

From (12.10) we find:

Imε ∝ |pnl|2
EC−�ω∫

0

DV (E)dE ⇒ d
dω

[
Imε (ω)
|pnl|2

]
∝ DV (EC − �ω)

Consequently, knowledge of the dielectric function and the behaviour of the
transition matrix element allows to determine the shape of the valence band,
as long as the conduction band may be regarded as structureless.
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12.4.2 Tauc-Gap and Urbach-Tail

Let us now come to the more interesting case of not too high frequencies, so
that quantum transitions are expected in the region of the band edges. This
will give us an idea about the shape of the absorption edge in an amorphous
semiconductor. Making (for simplicity) the assumption of parabolic band
edges, in complete analogy to the indirect transitions in crystals, we obtain:

DV (E) ∝ √−E; DC (E + �ω) ∝
√

E + �ω − E0 ⇒
(12.11)

Imε (ω) ∝ |pnl|2 (�ω − E0)
2

where E0 represents the so-called optical gap of the material (for the system
shown in Fig. 12.8, it is always lower than the mobility gap). If the dispersion
of the refractive index is negligible in the frequency range of interest, and if
the matrix element of the dipole operator in (12.11) is also constant, from
(12.11) and (2.18), (2.20a) we find for the absorption coefficient:√

α (ω)
ω

∝ (�ω − E0) (12.12)

This convenient expression relates the absorption coefficient to the optical
gap, hence, the gap may be determined from experimental absorption coeffi-
cient data, fitting the data by means of (12.12). The thus determined optical
gap is called the Cody gap. It is connected to the requirement of a constant
transition matrix element of the dipole operator.

A somewhat modified dependence is obtained, when the matrix element
of the momentum operator is supposed to be constant. We must then require,
that |pnl|2ω2 = const., and instead of (12.12) we find:√

α (ω) ω ∝ (�ω − E0) (12.13)

The thus defined optical gap is called the Tauc-gap. It is conveniently deter-
mined from the so-called Tauc-plot, where√

α (ω) ω

is plotted against the photon energy. The Tauc gap is often applied in practise
to characterize the optical properties of amorphous materials.

Nevertheless, all the optical gaps defined in this section are nothing else
than fitting parameters in dependences like (12.12) and (12.13). This is a
difference to the definition of forbidden zones as it is possible in the case of
crystals, where the existence of energy gaps is a direct conclusion from the
E(k)-dependence. On the contrary, in an amorphous solid it is quite possible
that even in the ‘forbidden’ zone in Fig. 12.8, there exists a finite density
of localized states. For that reason, the terminus “optical gap” is not well
defined for amorphous semiconductors. On the other hand, the introduction
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of the optical gap by a dependence like (12.13) gives at least a recipe for
the unambiguous and convenient determination of a parameter that may
be used to judge the quality of a prepared material with respect to certain
optical applications. For that reason, these parameters are widely used in
applied semiconductor research. In practice, (12.12) or (12.13) are used to
fit experimentally determined absorption coefficients which are larger than
approximately 10000 cm−1.

Keeping this in mind, it should be clear that an experimentally deter-
mined absorption coefficient that follows (12.13) should never be regarded
as a proof for the validity of a density-of-states behaviour as postulated in
(12.11). It may be shown quite easily, that the same type of absorption coef-
ficient behaviour may be obtained assuming quite other shapes for D(E). Let
us for a moment return to Fig. 12.8. In contrast to the band shape presented
there, let us assume, that in the band tail (they grey regions in Fig. 12.8,
which symbolize the localized states), the density of states increases linearly
with energy. For example, regarding the band tail of the valence band, we
suppose:

DV (E) ∝ −E

On the other hand, we postulate that the conduction band is structureless:

DC (E) ∝ θ (E − EC)

Let us now consider transitions from the valence band tail into the conduction
band. Neglecting transitions between localized states, we find:

Imε ∝ |pnl|2
−�ω∫
0

DV (E)DC (E + �ω) dE ∝ |pnl|2
EC−�ω∫

0

DV (E)dE ∝
(12.14)

|pnl|2
EC−�ω∫

0

EdE ∝ |pnl|2 (�ω − EC)2

This is exactly the same type of frequency dependence as in (12.11), although
the latter was obtained assuming parabolic band edges. The physical sense of
the optical gap in (12.14) is different from that in (12.11), it is now identical
to (EC − EB). We may include transitions from the valence band into the
conduction band tail as well, and in this case, the observed optical gap will
correspond to the lower value of (EC − EB) and (EA − EV ).

We have already mentioned, that the so-called power-law dependences
(12.11)–(12.14) are usually observed for absorption coefficients at the funda-
mental absorption edge which are larger than approximately 10000 cm−1. In
the region of lower absorption, one usually observes an exponential increase
of the absorption coefficient with frequency. This so-called Urbach tail is a
general disorder-induced feature in solid state optics, it is also apparent at
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the fundamental absorption edge of crystals due to the thermal motion of the
lattice atoms. In the Urbach-tail region, the absorption coefficient is given by:

α (ω) = α00e
ω

ω00 (12.15)

where α00 and ω00 are constants. Up to now, the physical origin of the ex-
ponential behaviour of the absorption coefficient is not clear. According to
(12.10), it may be caused by an exponentially increasing density of states at
the band tails. It is also possible, that the exponential behaviour arises from
the frequency-dependence of the matrix element. We will not discuss these
theories, but rather look at an example how the mentioned absorption laws
like (12.15) and (12.13) may work in practice.

As an example, let us regard an amorphous hydrogenated carbon (a-C:H)
film, deposited onto a fused silica substrate. The carbon film has been pro-
duced by a plasma deposition technique and has a thickness of approximately
820 nm. The experimental transmission and reflection spectra of this sample
are shown in Figs. 12.9a and 12.10a by the full and empty circles (“exp”).
It has then been attempted to fit the spectra by means of a curve fitting
procedure (compare Sect. 7.4.6). For the refractive index, according to (4.9)
we assumed:

n2 = A + Bν2

Neither of the dependences (12.13) or (12.15) fits the experimental spectra
in the full spectral region. Therefore, the spectrum has been subdivided into
two regions, which have been fitted separately assuming:

ν < 13000 cm−1 : α (ν) = α00e
ν

ν00 Urbach

ν > 13000 cm−1 :
√

α (ν) ν = const. × (hcν − E0) Tauc

In each of these dependencies, only two constant parameters have to be de-
termined as a result of the fit. Figure 12.9a demonstrates the quality of the
fit at low wavenumbers, assuming the exponentially increasing absorption co-
efficient according to Urbach’s law. At higher wavenumbers, the theoretically
calculated spectra (”theor”) show significant deviations from the experimen-
tal data (“exp”). Figure 12.9b shows the corresponding optical constants,
which are valid for wavenumbers below 13000 cm−1. Despite of the exponen-
tial increase of the absorption coefficient, we notice the normal dispersion
of the refractive index. All fits have been performed minimizing (7.27) with
respect to (7.25), (7.26) and (7.12)–(7.15).

Figure 12.10a, on the contrary, shows the fit at higher wavenumbers, as-
suming Tauc’s law for the absorption coefficient. The fit is quite good at high
wavenumbers, but insufficient at lower wavenumbers. The optical constants
(Fig. 12.10b demonstrate the anomalous dispersion of the refractive index, as
valid in the region of high absorption. The Tauc gap E0 is determined this
way to be equal to 1.14 eV.
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Fig. 12.9. a) Fit of the long wavelength section of the experimental spectra of
an a-C:H film on fused silica assuming (12.15) for the absorption coefficient and
(4.9) for the refractive index; b) optical constants corresponding to the theoretical
spectra in a)

The final result is then obtained combining the results obtained from both
fits. This is demonstrated in Fig. 12.11, where the relevant optical constants
are plotted in the full wavelength range. Obviously, the optical constants
obtained from both models are in good mutual accordance, as seen from the
nearly continuous behaviour at the wavenumber of 13000 cm−1.

Figure 12.11 thus depicts a typical behaviour of the absorption coefficient
in the vicinity of the fundamental absorption edge: an exponential Urbach tail
at lower frequencies, followed by an absorption region where the absorption
coefficient is described by a power-law.
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Fig. 12.10. a) Fit of the short wavelength section of the experimental spectra of
an a-C:H film on fused silica assuming (12.13) for the absorption coefficient and
(4.9) for the refractive index; b) optical constants corresponding to the theoretical
spectra in a)

12.5 Resume from Chapters 10–12

12.5.1 Overview on Main Results

The Chaps. 10–12 have been devoted to the semiclassical theory of the optical
constants of different kinds of matter. Let us shortly resume the main results
of this third part of the present book.

– For a quantum system with discrete energy levels, the dielectric function
appears to be determined by the resonance frequencies and intensities of
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Fig. 12.11. Optical constants obtained from the merger of the two dependencies
(12.15) and (12.13)

quantum transitions which are induced by the impinging light. It has the
same general frequency dependence as that obtained from the classical
multioscillator model. In the quantum mechanical description, the classi-
cal resonance frequencies appear to be replaced by transition frequencies
between the single energy levels. The intensity of the quantum transi-
tion is determined by the transition matrix element of the perturbation
operator and the populations of the participating energy levels.

– The transition matrix element of a given perturbation operator allows
to classify a quantum transition as allowed or forbidden with respect to
that type of perturbation. In optical spectroscopy, it is often sufficient to
regard the electrical dipole interaction between the material system (an
atom, or a molecule, or an elementary cell in a crystal) as the perturbation
that induces the transition. If the dipole transition matrix element is zero,
then the transition is dipole-forbidden. If the matrix element is different
from zero, the corresponding transition is called to be allowed.

– If there occurs population inversion between two energy levels, the system
does not absorb light at the corresponding resonance, but tends to amplify
the incoming light by stimulated emission. This effect is in the fundament
of the working principle of lasers.

– In a crystalline solid one finds energy bands instead of discrete energy
levels. As it follows from quasimomentum conservation, in the case of di-
rect transitions, it is the joint density of states that determines the main
features of the shape of the dielectric function. This is especially evident
in the case of broad energy bands, as it is typical for covalent materi-
als. In molecular solids, the electronic wavefunction overlap between the
molecules may be small, so that the bandwidth which might be formally
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Fig. 12.12. Spectra of a CuPc-film (top) and corresponding optical constants
(bottom)

calculated is also small. The optical behaviour of such a material is close
to the behaviour of the molecules which build the solid. The spectra of
such films may therefore be approximated by a few Lorentzian oscillators.
As an example, Fig. 12.12 (top) shows the normal incidence transmission
and reflection spectra of a 18 nm thick copperphthalocyanine (CuPc) film
on fused silica. On bottom, one sees the corresponding optical constants,
which are qualitatively close to the behaviour known from the multioscil-
lator model (Fig, 4.2).

When the band structure E(k) has to be considered, the resulting shape of the
dielectric function becomes more complicated. Although it may formally be
approximated by a continuous distribution of Lorentz-oscillators (for direct
transitions this follows from (12.1)), it is dominated by the joint density of
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Fig. 12.13. Dielectric function of crystalline silicon versus photon energy as taken
from two sources: [1] D.E. Aspnes, A.A. Studna: Dielectric functions and optical
parameters of Si, Ge, GeAs, GeSb, InP, InAs and InSb from 1.5 to 6.0 eV, Phys.
Rev. B 27, No. 2, 985–1009 (1983); [2] V.V. Sobolev, S.A. Alekseev, V.I.
Doneckih: Rasqety optiqeskih funkci� poluprovodnikov po sootnoxeni�m
Kramersa–Kroniga (Kixinev, Xtinica 1976) (in Russian), (engl.: Calculation
of semiconductor optical functions from Kramers–Kronig-relations)

Fig. 12.14. Dielectric function of crystalline germanium versus photon energy;
according to source 2 from Fig. 12.13

states and particularly the van-Hove-singularities. As examples, Figs. 12.13
and 12.14 show the dielectric function of crystalline silicon and germanium. In
these experimental curves, all direct and indirect transitions that contribute
to the dielectric functions in the given photon energy range are involved.

In amorphous solids, the absorption edge is usually dominated by a power-
law region, followed by an Urbach tail at higher wavelength.
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12.5.2 Problems

1. Estimate the lifetime of an excited discrete quantum state, which relaxes
into the ground state by emission of a photon via dipole radiation. In
(10.52), the charge should be equal to the elementary charge, while the
transition matrix element of the coordinate could be 10−8 cm. The emis-
sion wavelength might be 500 nm.

Answer: τ ≈ 1.6 × 10−8 s.

Remark: This is a typical radiative lifetime for well-allowed dipole tran-
sitions (compare Sect. 4.1). For a lower absolute value of the transition
matrix element, the lifetime will be larger.

2. Basing on Planck’s formula, discuss the extraterrestrial spectrum of the
sunlight and compare it with your experience as obtained under terrestrial
conditions. The surface temperature of the sun is close to 6000 K.

3. Imagine an electron, which is allowed to perform a one-dimensional mo-
tion between two impermeable walls separated by the length L (a sim-
ilar system is sketched in Fig. 10.3)! The electronic wavefunctions are
given by:

ψn(x) =

√
2
L

sin
(nπx

L

)
; n = 1, 2, 3, . . . ,

and the eigenvalues by:

En =
�

2π2n2

2mL2 ; n = 1, 2, 3, ...

Calculate the transition matrix elements for electric dipole transitions
between two arbitrary levels l and n!

Result: p2
nl = q2 64L2

π4

n2l2

(n − l)4 (l + n)4
(l − n is odd)

and pnl = 0 for even values of (l − n). q and m are the electron charge
and mass, respectively.

Remark: It appears that a large amount of the principally possible quan-
tum transitions are dipole forbidden. This is a particular conclusion from
a more general selection rule derived in quantum mechanics: In a cen-
trosymmetric potential, the solutions of Schrödinger’s equation in the
coordinate picture are either even or odd functions of the coordinates
with respect to the inversion centre. Those quantum states are called to
have even or odd parity. Because the coordinate itself is an odd function,
it appears that a dipole transition may only take place between quantum
states that have different parity. Indeed, the regarded quantum well is
centrosymmetric, and the allowed transitions correspond to transitions
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Fig. 12.15. Visualization of the alternative rule: a) the transition between 1 and 2
is dipole forbidden, but Raman-allowed; b) the transition between 1 and 2 is dipole
allowed, but Raman-forbidden

from an even to an odd function or vice versa, but never from an even to
another even function or an odd to another odd.
The parity selection rule is extremely important in the optical spec-
troscopy of any centrosymmetric system. A particular conclusion from
this selection rule is the so-called alternative rule in vibrational spec-
troscopy: In a centrosymmetric system, an infrared-active transition (that
means dipole-allowed transition in the IR, as typical for vibrational spec-
troscopy) cannot be Raman-active (allowed in Raman spectroscopy), and
vice versa. The reason is illustrated in Fig. 12.15.
As shown in Fig. 12.15, an optical transition between two states of identi-
cal parity is possible by a Raman process via an intermediate virtual level
of the other parity. On the other hand, a Raman-process cannot occur
between states of different parity, because the intermediate virtual level
must have the same parity as one of the levels 1 and 2. Consequently,
infrared (T or R) spectroscopy and Raman spectroscopy are comple-
mentary methods, and may yield information about different quantum
transitions. This is of importance in centrosymmetric molecules as well
as special crystal classes. Concerning thin film technology, the diamond
films (which should not be confused with diamond-like films) may be
mentioned as a prominent example: Usually, it is the Raman-spectrum
of a diamond film that serves as a criterion for the quality of the film.
The reason is, that the zone-centre optical phonon in diamond is Raman-
active, but not infrared-active.

4. The oscillator strength of a quantum transition of a single electron be-
tween the states l and n is defined as:

fnl =
2m|xnl|2ωnl

�
.
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Basing on the correspondence principle, derive the sum rule for the os-
cillator strength: ∑

n�=l

fnl = 1!

Remark: Use expressions (5.10) and (11.31) together with (3.24)! Require
further, that the thus obtained expressions for the dielectric function in
classics and quantum mechanics have identical asymptotes for infinitively
large photon energies (ω → ∞). From that, you should find:

∑
l

∑
n>l

|xnl|2
�

· 2ωnl · m
(
ρ
(0)
ll − ρ(0)

nn

)
= 1

You will now need to perform some algebraic operations. This leads to:

2m

�

{∑
l

∑
n>l

|xnl|2ωnl · ρ
(0)
ll +

∑
l

∑
n>l

|xnl|2ωln · ρ(0)
nn

}

=
2m

�

{∑
l

∑
n>l

|xnl|2ωnl · ρ
(0)
ll +

∑
n

∑
l<n

|xnl|2ωln · ρ(0)
nn

}

=
2m

�

{∑
l

∑
n>l

|xnl|2ωnl · ρ
(0)
ll +

∑
l

∑
n<l

|xnl|2ωnl · ρ
(0)
ll

}

=
∑

l

⎡
⎣∑

n�=l

2m|xnl|2ωnl

�

⎤
⎦ρ

(0)
ll = 1

This should be valid for any time-independent and stationary value ρ
(0)
ll .

Therefore, the term in parentheses should not depend on l. On the other
hand, we have: ∑

l

ρ
(0)
ll = 1

From that, it follows that

∑
n�=l

2m|xnl|2ωnl

�
= 1

must be fulfilled.

5. Starting from the sum rule for the oscillator strength, calculate the ab-
solute values of the transition matrix elements of the coordinate of a
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one-dimensional harmonic oscillator. You only need to assume the selec-
tion rule n → n ± 1, valid for the harmonic oscillator.

Answer: See (10.47).

Remark: These results have been obtained by Werner Heisenberg in terms
of his matrix theory of quantum mechanics one year before Schrödinger’s
Equation has been formulated.

6. Basing on problem 3, calculate the oscillator strength for the allowed
dipole transitions of an electron confined between two walls (one-dimen-
sional case).

Result: fnl =
64
π2

n2l2

(n − l)3 (l + n)3
for odd n − l

For some (n, l)-pairs, exemplify the validity of the sum rule for the oscilla-
tor strength. Keep in mind, that the oscillator strength may be negative.

7. Make sure, that the polarizability as calculated by (11.31) has the correct
dimension (m3). Repeat the same for the dielectric function according to
(12.1), which should be dimensionless!

8. Estimate the Tauc gap immediately from the normal incidence trans-
mission spectrum of an amorphous semiconductor film on a transparent
substrate in the region of low transmittance!

Answer: E0 ≈ hc√
λ1λ2

√−λ2 lnT (λ2) −√−λ1 lnT (λ1)√−λ1 lnT (λ2) −√−λ2 lnT (λ1)

Remark: For high absorption, from (7.13), (7.15) and (7.25) it follows
that

T ≈ f (n, nsub) e−αd,

where d is the film thickness. From that, and assuming the power law
(12.13) for the absorption coefficient, we find:

αd = ln
f

T
=

const. × d

ω
(�ω − E0)

2
.

Regarding f as a constant in a limited wavelength region with 1 > f � T ,
and assuming two wavelength values λ1 and λ2, the product const.×d may
be excluded from the equation. From that, the final result is obtained.
It is useful to demonstrate the relative accuracy by means of a simple
example. Let us regard the transmission spectrum from Fig. 12.9a. We
choose two data points from the spectrum: λ1 = 640 nm corresponding
to T (λ1) = 0.11 and λ2 = 586 nm corresponding to T (λ2) = 0.05. From
the derived equation, we obtain an estimated gap of 1.12 eV, quite close
to the more accurate value of 1.14 eV as obtained from the spectra fit.
The merit of gap estimation by this equation decreases with increasing
refractive indices and refractive index dispersion.
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9. As mentioned at the end of Sect. 10.7.2, it would be necessary to excite a
large amount of mutually adjacent longitudinal resonator modes in order
to cause a laser to supply us with short light pulses instead of a continuous
light wave. In fact, it turns out to be sufficient to excite these laser modes
with well-defined mutual phase relations (by means of a so-called mode-
locking mechanism) in order to force a laser to produce a sequence of short
light pulses. You shall now show theoretically, that the superposition of
trains of travelling electromagnetic waves with different but equidistant
frequency values and identical zero phase values is indeed identical to a
travelling sequence of short light pulses. You may assume for simplicity,
that all of the participating waves have the same amplitude E0.

Solution: Let us assume that a number of M adjacent modes is excited
in a cavity of length L. Their angular frequency values are given by:

ω, ω − cπ

L
, ω − 2cπ

L
, . . . , ω − (M − 1) cπ

L
.

Assuming identical zero phase values, the full electric field strength may
be calculated according to:

E = E0 e−iωt + E0 e−iωt ei cπ
L t + . . .

= E0 e−iωt
M∑

j=1

[
ei cπ

L t
]j−1

= E0 e−iωt e
i Mcπ

L t − 1
ei cπ

L t − 1
.

The intensity of the light is proportional to the square of the modulus of
the electric field amplitude. Hence we have to discuss the function:

|E|2 = |E0|2

(
cos

Mcπ

L
t − 1

)2

+ sin2 Mcπ

L
t(

cos
cπ

L
t − 1

)2
+ sin2 cπ

L
t

= |E0|2

(
1 − cos

Mcπ

L
t

)
(
1 − cos

cπ

L
t
)

= |E0|2
sin2 Mcπ

2L
t

sin2 cπ

2L
t

From here we see, that the light intensity is time dependent. It is moreover
periodic with a repetition time of 2L/c. This is exactly the time necessary
for one loop of the light in the resonator. Therefore, the laser generates a
periodic intensity profile, which is shown in Fig. 12.16 for different values
of M . At the moments:

tm =
2L

c
m ≡ T0m; m = 0, 1, 2, . . .

this function reaches its maximal values according to:
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Fig. 12.16. Shape of the function f(x) = sin2(Mx)/ sin2 x

|E|2max = |E0|2M2.

The more modes are involved into the process, the more intense the peak
is. Please note that this result is tightly connected to the assumed iden-
tical zero phase values of the modes: In that (coherent) case, the field
strength values add up to the full field strength, which is proportional to
M . Therefore, the intensity turns out to be proportional to the square
of M . If the phases would be distributed in a stochastic manner (inco-
herent superposition), one would have to superimpose the intensities of
the individual wave trains, so that the resulting intensity would be pro-
portional to M . The background physics is the same as in the discussion
from Sect. 7.2.
We come to the result, that in mode-locking conditions, the laser pro-
duces a sequence of short and intense light pulses with a repetition rate
T−1

0 . The pulse duration is 2T0/M . Again, the more modes are involved
into the process, the shorter the pulses are. This is consistent with the
uncertainty principle, because a larger number of longitudinal modes is
connected with a broader spectral width of the laser light, necessary for
a shorter pulse duration. Practically, by means of mode-locking, subpi-
cosecond light pulses may be generated.

Remark: This is a nice example to demonstrate, that laser light may
reach extraordinarily high electric field strength and intensity values. As
we mentioned in Sect. 2.2, the linear material (2.4) corresponds to the
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linear term in an expansion of the polarization into a Taylor’s power
series. Clearly, at very high field strength values, it is insufficient to keep
only the linear term, instead, we have to regard nonlinear polarization
terms as well. That means, that a correct description of the interaction of
intense laser light with matter requires a more general description, which
is subject of the field of nonlinear optics. The last part of this book is
therefore dedicated to basic effects of nonlinear optics, relevant at very
high electric field strength values.



Part IV

Basics of Nonlinear Optics



13 Some Basic Effects of Nonlinear Optics

13.1 Nonlinear Susceptibilities:
Phenomenological Approach

13.1.1 General Idea

In Chap. 2, we formulated the linear material equation (2.4) as a special case
of the more general formulation (2.3). All optical effects, which have been
described so far basing on (2.4), belong to the field of linear optics (LO).

On the other hand it is clear, that in general, the validity of (2.3) may
require to consider higher order terms in the expansion of the polarisation
into a power series of the field strength. The natural generalization of (2.9)
would then read as:

D = ε0E + P = ε0E + P (1) + P (2) + P (3) + . . .
(13.1)

= ε0

{
E + χ(1)E + χ(2) : EE + χ(3) : EEE + . . .

}
where the superscripts (1)–(3) in the polarization indicate polarization con-
tributions that increase in a linear (1), quadratic (2) or cubic (3) manner
with field strength. Even higher order polarization terms are possible, how-
ever, we will restrict our discussion to the mentioned terms. P (1) indicates the
so-called linear polarization, while all higher order polarization terms form
the nonlinear polarization. They are responsible for the effects of nonlinear
optics (NLO), which are entirely different from those found in linear optics.

In (13.1), the value χ(1) is nothing else than the familiar linear suscep-
tibility as defined earlier by (2.7). The proportionality coefficients χ(2), χ(3)

and so on represent the quadratic, cubic, and higher order susceptibilities.
Similar to linear optics, they carry the information about the specifics of the
material interacting with the light wave.

Regardless on the concrete values of the linear and nonlinear susceptibil-
ities, it is clear that (13.1) converges to the linear equation (2.9) when the
electric field strength becomes sufficiently small. Figure 13.1 demonstrates
the principal dependence of the individual contributions to the polarization
on the field strength. At weak fields, the linear contribution is dominating,
and in this case the previously discussed effects of linear optics (LO) are suffi-
cient to describe the optical properties of a material. At higher field strength,
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Fig. 13.1. Linear and nonlinear contributions to the polarization of a nonlinear
medium

the nonlinear polarization becomes significant, so that we enter the field of
nonlinear optics. Here, both linear and nonlinear contributions to the full
polarization have to be taken into account. Practically, this is usually of sig-
nificance when we deal with laser light. As a kind of slang, a medium which
shows nonlinear optical properties is sometimes called a nonlinear medium.

Equation (13.1) is written in a somewhat symbolic manner. In fact, the
products at the right hand of (13.1) have to be understood as tensor prod-
ucts, the susceptibilities themselves represent tensors of different orders. We
will now present some alternative versions of writing material equations like
(13.1).

Let Pi be the i-th Cartesian component of the polarization with i = x, y,
z, we may write:

P (1) = ε0χ
(1)E ⇔ P

(1)
i = ε0

∑
j=x,y,z

χ
(1)
ij Ej ;

P (2) = ε0χ
(2)EE ⇔ P

(2)
i = ε0

∑
j=x,y,z

∑
k=x,y,z

χ
(2)
ijkEjEk; (13.2)

P (3) = ε0χ
(3)EEE ⇔ P

(3)
i = ε0

∑
j=x,y,z

∑
k=x,y,z

∑
l=x,y,z

χ
(3)
ijklEjEkEl

The first equation in (13.2) is nothing else than the general (anisotropic)
version of the linear material equation, as already used in Sect. 6.5. According
to Sect. 6.5 the linear susceptibility may be regarded as a 3 × 3 quadratic
matrix. So that another form of writing the linear material equation is:

P (1) =

⎛
⎜⎜⎝

P
(1)
x

P
(1)
y

P
(1)
z

⎞
⎟⎟⎠ = ε0

⎛
⎜⎜⎝

χ
(1)
xx χ

(1)
xy χ

(1)
xz

χ
(1)
yx χ

(1)
yy χ

(1)
yz

χ
(1)
zx χ

(1)
zy χ

(1)
zz

⎞
⎟⎟⎠
⎛
⎜⎝Ex

Ey

Ez

⎞
⎟⎠
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The second order susceptibility, χ(2), represents a 3 × 3 × 3 tensor with 27
components, while χ(3) has 81 components.

13.1.2 Formal Treatment and Simple Second Order Nonlinear
Optical Effects

In order to get some idea on the frequency arguments relevant for the nonlin-
ear susceptibilities introduced previously, we will have to proceed the same
way as we did in the case of the linear material (2.4). So when starting from
(2.3), and assuming a nonlinear material equation while keeping the require-
ments of causality and homogeneity in time, we may write:

P (t) = P (0) + P (1) + P (2) + P (3) + . . . =

= ε0 const. + ε0

∞∫
0

κ(1) (ξ) E (t − ξ) dξ +

+ ε0

∞∫
0

∞∫
0

κ(2) (ξ1, ξ2) E (t − ξ1) E (t − ξ1 − ξ2) dξ1dξ2 + (13.3)

+ ε0

∞∫
0

∞∫
0

∞∫
0

κ(3) (ξ1, ξ2, ξ3) E (t − ξ1) E (t − ξ1 − ξ2) ×

×E (t − ξ1 − ξ2 − ξ3) dξ1dξ2dξ3 + . . .

Equation (13.3) is nothing else than a nonlinear generalization of (2.5). We
do not regard ferroelectrics, so that the constant, field-independent contribu-
tion P (0) is assumed to be zero. In (13.3), the response functions κ(i) again
represent tensors of a range according to (13.2).

When comparing (2.5) and (13.3), we notice a further complication of
the mathematical treatment of nonlinear optical processes. Because both the
electric field strength and the polarization are real physical values, the re-
sponse functions κ(i) must be real as well. Nevertheless, in linear optics, we
were used to work with complex fields and polarizations. The reason is, that
in the linear equation (2.5), we may make use of the superposition principle.
Regarding the identity:

|E0| cos (ωt + ϕ) =
1
2
[|E0| eiωteiϕ + |E0| e−iωte−iϕ] =

1
2
[
E∗

0eiωt + E0e−iωt
]

with

E0 ≡ |E0| e−iϕ

for the linear polarization it is found (2.5):
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P (t) =
ε0

2

⎡
⎣E0e−iωt

∞∫
0

κ (ξ) eiωξdξ + E∗
0eiωt

∞∫
0

κ (ξ) e−iωξdξ

⎤
⎦

This relation defines a real polarization, because the first term (which is the
analogue to (2.6)) is conjugated complex to the second one. The second term
does therefore not contain any new physical information, and all derivations
in linear optics may be performed basing on the first term only, operating
with a complex polarization. When in the final result the real polarization
is required, one simply has to add the conjugated complex term, and all will
be fine.

This treatment is impossible in nonlinear optics, because such a treatment
would result in a loss of polarization terms. This may be demonstrated by
a simple example. Let us regard the quadratic nonlinearity according to the
simplified equation:

P (2) = ε0χ
(2)E2

The assumption

E =
E0

2
e−iωt

leads us to

P (2) = ε0χ
(2) E2

0

4
e−2iωt (13.4a)

For simplicity, the amplitude of the electric field strength should be real
throughout this discussion. We find, that the assumed time dependence of
the electric field leads to a polarization in the medium which oscillates with
twice the frequency of the incoming field. Of course, such an oscillating polar-
ization gives rise to the generation of an electromagnetic wave at the angular
frequency 2ω. This means, that at least a part of the energy of the ingoing
wave is transferred to a new wave with the doubled frequency, an effect which
is called Second Harmonic Generation (SHG). SHG is the most prominent
effect of nonlinear optics in media with a quadratic nonlinearity.

Let us now regard another case. We assume:

E =
E0

2
e+iωt

The resulting second order polarization is:

P (2) = ε0χ
(2) E2

0

4
e2iωt (13.4b)(13.4c)

Both equations (13.4a) and (13.4b) describe a polarization that oscillates at
a frequency 2ω. Adding up (13.4a) and (13.4b) will lead to a real value of the
polarization, but it will not give any new physical effects.
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Let us now regard a real field strength given by the algebraic sum of the
versions discussed so far. We assume:

E =
E0

2
(
e+iωt + e−iωt

)
= E0 cos ωt

The corresponding second order polarization becomes:

P (2) = ε0χ
(2) E2

0

4
(
e2iωt + e−2iωt + 2

)
(13.4d)(13.4e)

This is more than what has been predicted by the algebraic sum from (13.4a)
and (13.4b). Although the SHG terms are present as expected, there is a
further term, which corresponds to a time-independent (static) polarization,
created by the quadratic nonlinearity as the result of a nonlinear effect called
optical rectification. Equation (13.4c) states, that as the result of the nonlinear
interaction of a monochromatic wave with matter, second order polarization
terms occur that are constant or oscillating with twice the frequency of the
incoming wave.

We see, that the application of the simplified complex electric fields will
lead to a serious loss of information, when we deal with nonlinear optics.
Therefore, in the forthcoming, we will always regard a real expression for the
electric fields according to:

E (t) =
1
2

∑
j

E0je−iωjt + c.c. (13.5)

with c.c. – conjugate complex value.
Being equipped with a grammar expression for the electric field like (13.5),

we may discuss the complete output of (13.3) for the quadratic polarization.
For simplicity, let us use a scalar version of (13.3), with scalar electric field
amplitudes in (13.5). We obtain:

P (2) (t) = ε0

∞∫
0

∞∫
0

κ(2) (ξ1, ξ2) ·
⎡
⎣1

2

∑
j

E0je−iωjteiωjξ1 + c.c.

⎤
⎦

×
[

1
2

∑
l

E0le−iωlteiωlξ1eiωlξ2 + c.c.

]
dξ1dξ2

=
1
4
ε0

∞∫
0

∞∫
0

κ(2) (ξ1, ξ2) f (t, ξ1, ξ2) dξ1dξ2

f =
∑

j

(
E0je−iωjteiωjξ1 + E∗

0je
iωjte−iωjξ1

)

×
∑

l

(
E0le−iωlteiωlξ1eiωlξ2 + E∗

0le
iωlte−iωlξ1e−iωlξ2

)
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=
∑

j

E0j

∑
l

[
E0le−i(ωj+ωl)tei(ωj+ωl)ξ1eiωlξ2

]

+
∑

j

E∗
0j

∑
l

[
E0le−i(ωl−ωj)tei(ωl−ωj)ξ1eiωlξ2

]

+
∑

j

E0j

∑
l

[
E∗

0le
−i(ωj−ωl)tei(ωj−ωl)ξ1e−iωlξ2

]

+
∑

j

E∗
0j

∑
l

[
E∗

0le
+i(ωj+ωl)te−i(ωj+ωl)ξ1e−iωlξ2

]

P (2) (t) =
1
4
ε0

∑
j

∑
l

E0jE0le−i(ωj+ωl)t ×

×
∞∫
0

∞∫
0

κ(2) (ξ1, ξ2) ei(ωj+ωl)ξ1eiωlξ2dξ1dξ2

+
1
4
ε0

∑
j

∑
l

E∗
0jE0le−i(ωl−ωj)t ×

×
∞∫
0

∞∫
0

κ(2) (ξ1, ξ2) ei(ωl−ωj)ξ1eiωlξ2dξ1dξ2

(13.6)
+

1
4
ε0

∑
j

∑
l

E0jE
∗
0le

−i(ωj−ωl)t ×

×
∞∫
0

∞∫
0

κ(2) (ξ1, ξ2) ei(ωj−ωl)ξ1e−iωlξ2dξ1dξ2

+
1
4
ε0

∑
j

∑
l

E∗
0jE

∗
0le

i(ωj+ωl)t ×

×
∞∫
0

∞∫
0

κ(2) (ξ1, ξ2) e−i(ωj+ωl)ξ1e−iωlξ2dξ1dξ2

The general conclusion from (13.6) is, that the nonlinear second order po-
larization oscillates with all sum and difference frequencies resulting from
the primary frequencies of the incoming field (13.5). Correspondingly, one
speaks on Sum Frequency Generation (SFG) and Difference Frequency Gen-
eration (DFG) in nonlinear optics. The previously regarded effects of Second
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Harmonic Generation and Optical Rectification appear as particular cases in
(13.6), namely when ωj = ωl.

In complete analogy to the treatment in the linear case, the integral terms
in (13.6) form the second order susceptibilities. They are expected to show a
somewhat more complicated dispersion behaviour than the linear susceptibil-
ity, because they are dependent on two incident frequencies and the particular
way in which they combine to the frequency of the polarization. Formally,
(13.6) may be rewritten as:

P (2) (t) =
1
4
ε0

∑
j

∑
l

E0jE0le−i(ωj+ωl)tχ(2) (ω = ωj + ωl) + c.c

(13.7)
+

1
4
ε0

∑
j

∑
l

E∗
0jE0le

−i(ωl−ωj)tχ(2) (ω = ωl − ωj) + c.c

The concrete expressions for χ(2) follow from the comparison with (13.6).
The frequency arguments in (13.7) have to be understood in the following

way: The first frequency indicates the resulting frequency of the second order
polarization. The following frequencies indicate the frequencies of the electric
fields forming the polarization and the particular way of their combination.
Thus, the effects described so far correspond to the following susceptibilities:

χ(2) (ω = ωl + ωj) ⇔ SFG

χ(2) (ω = ωl − ωj) ⇔ DFG

χ(2) (2ω = ω + ω) ⇔ SHG

χ(2) (0 = ω − ω) ⇔ optical rectification

We will not perform a similarly detailed discussion of the properties of non-
linear susceptibilities as we did in the case of the linear susceptibility. We
only remark that there exist several symmetry relations which may reduce
the quantity of nonzero and independent components of the susceptibility.
Our task will rather be to define nonlinear optical effects which may be of
significance for our particular subject, namely the optics of thin films and
optical effects at surfaces.

We will proceed with an extremely important selection rule: In a medium
with an inversion centre (or so-called centrosymmetric materials), all com-
ponents of any even-order nonlinear susceptibility are zero in the dipole ap-
proximation. For the particular case of the second order susceptibility, this
is a direct conclusion from (13.7). Imagine an electric field like (13.5), which
causes a certain second order polarization. From the supposed inversion sym-
metry it is clear, that an inversion of the electric field strength should be
accompanied by an inversion of the polarization:

E → −E ⇒ P → −P ⇒ P (2) (−E) = −P (2) (+E)
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On the other hand, it follows from (13.7), that

P (2) (−E) =
1
4
ε0

∑
j

∑
l

(−E0j) (−E0l) e−i(ωj+ωl)tχ(2) (ω = ωj + ωl) + c.c

+
1
4
ε0

∑
j

∑
l

(−E∗
0j

)
(−E0l) e−i(ωl−ωj)tχ(2) (ω = ωl − ωj) + c.c

= P (2) (+E)

Both conditions together may only be fulfilled, when the second order polar-
isation is zero for any assumed electric field configuration. This means, that
the second order susceptibility must be zero. This kind of discussion may be
performed for any even order susceptibility, but obviously not for the odd
order susceptibilities.

As it will be seen later in the quantum mechanical treatment, the vanish-
ing of even order susceptibilities in media with inversion symmetry is a direct
conclusion from the parity selection rule. For us it is important to notice, that
second (and other even) order nonlinear processes are only allowed in media,
which lack inversion symmetry. On the other hand, odd order processes are
in principle allowed in any medium. For that reason, even order processes are
rarely used in optical spectroscopy, because they cannot be applied to every
bulk material. Nonlinear optical spectroscopy usually bases on odd order (ba-
sically third order) optical effects. On the other hand, second order processes
are often applied for frequency conversion processes such as SHG, SFG or
DFG, utilizing a couple of selected nonlinear materials which have the neces-
sary nonzero components of the second order susceptibility tensor. Prominent
examples are potassium dihydrogen phosphate KH2PO4 (KDP), ammonium
dihydrogen phosphate NH4H2PO4 (ADP), or lithium niobate LiNbO3.

There is an important exclusion from this rule: At the interface between
two materials, inversion symmetry is always destroyed, although both of the
particular materials may be centrosymmetric. Therefore, second order pro-
cesses may be used for interface spectroscopy. Being applied to the surface
or interfaces between centrosymmetric materials, their advantage is to sup-
ply a background-free second order optical response of the interface region.
Combined with local electric field strength enhancement mechanisms (for ex-
ample in propagating surface plasmon arrangements at the metal-dielectric
interface, compare Sect. 6.4.2), second order processes supply highly inter-
face sensitive spectroscopic tools for interface and ultrathin adsorbate layer
spectroscopy.

In finishing this Section, let us shortly discuss a further second order
optical effect, which is of practical importance for light modulation purposes.
It is the so-called linear electrooptic effect or Pockel’s effect. Imagine a second
order material, externally excited by a monochromatic field and a static one
(Es). The field is thus given by:
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E =
E0

2
e−iωt + c.c. + Es

When calculating now the second order polarization, it will contain a term
that oscillates with the frequency ω. It is given by:

P (2)
∣∣∣
ω

= ε0E0Esχ
(2) (ω = ω + 0) e−iωt + c.c.

Of course, the linear polarization will also contain terms that are oscillating
with ω according to:

P (1)
∣∣∣
ω

=
1
2
ε0E0χ

(1) (ω) e−iωt + c.c.

So that the full polarization at ω is given by (neglecting higher order polar-
ization terms):

P |ω = P (1)
∣∣∣
ω

+ P (2)
∣∣∣
ω

= ε0

[
χ(1) (ω) + 2χ(2) (ω = ω + 0) Es

]E0

2
e−iωt + c.c.

(13.8)

Equation (13.8) is completely analogous to a linear material equation, when
regarding the term in parentheses as an effective susceptibility, which depends
on the strength of the static field as a parameter. Hence, we may define:

χ(eff) (ω) ≡ χ(1) (ω) + 2χ(2) (ω = ω + 0) Es (13.9)

An electromagnetic wave with the frequency ω will propagate in such a non-
linear medium in an identical manner as it would propagate in a linear one,
when the linear susceptibility has the value as prescribed by (13.9). We may
therefore define an effective refractive index analogously to the treatment in
linear optics:

n(eff) (ω) =
√

ε(eff) (ω) ≡
√

1 + χ(eff) (ω)
(13.10)

=
√

1 + χ(1) (ω) + 2χ(2) (ω = ω + 0) Es = n(eff) (ω, Es)

According to (13.10), the value of the effective refractive index may be con-
trolled by the strength of the static electric field. Hence, the propagation
properties of the wave with frequency ω may be controlled by the static field.
The name ‘linear electrooptical effect’ arises from the linear dependence of
the effective susceptibility on the field strength. In real world, Pockel’s effect
leads to the appearance of a field-induced birefringence, or alters the already
existent birefringence.

The mentioned effect is practically applied in so-called Pockel’s cells. They
may be used to modulate the resonator properties of lasers in order to produce
short laser pulses. By the way, they offer a way to accomplish the mode
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locking process discussed in problem 9 of Chap. 12: When modulating the
cavity losses of a laser with the repetition time 2L/c, we generate sidebands
to the existing laser modes that exactly correspond to longitudinal resonator
modes. They are in rigid mutual phase relations because they have been
created by the same modulation mechanism. So we obtain the situation which
has been discussed in problem 9 of Chap. 12: The laser starts to produce short
laser pulses. This modulation of the cavity losses may be accomplished by
the mentioned Pockel’s cells. The corresponding mode locking mechanism is
called active mode locking.

13.1.3 Some Third Order Effects

In complete analogy to the second order polarization, one may discuss the
third order term in (13.3) in order to investigate optical effects that arise as
a result of third order nonlinearity in different media. It is particularly im-
portant for any spectroscopist to become familiar with third order nonlinear
effects, because the latter may be observed in any medium regardless on the
concrete symmetry that is subject to the given sample. In the context of our
discussion of thin film optical properties, we will concentrate on a few effects
which might be helpful to understand the behaviour of optical materials when
illuminated with laser light of high intensities.

Assuming an oscillating electric field according to:

E =
E0

2
e−iωt + c.c.

and proceeding the same way as in the previous section, we obtain a third
order polarization term, which oscillates with the frequency 3ω:

P (3) = . . . + ε0χ
(3) (3ω = ω + ω + ω)

E3
0

8
e−3iωt + c.c. + . . . (13.11)

Consequently, in a third-order nonlinear medium, an electromagnetic wave
will be generated that has the frequency 3ω. The corresponding process is
called Third Harmonic Generation THG. Nevertheless, in practice third har-
monic generation is usually not accomplished by means of a third order non-
linear frequency conversion. Instead, it turns out to be more efficient to use
a cascade of second order processes to generate higher order harmonics of a
given ground frequency. Thus, the third harmonic may be generated by SHG
of the ground frequency, followed by an SFG process between the second
harmonic and the ground frequency.

But let us return to (13.11), and in particular to terms which do not
oscillate at the THG frequency. Indeed, as a result of the third order frequency
mixing, we obtain a third order polarization that oscillates at the ground
frequency ω. It is given by:

P (3)
∣∣∣
ω

=
3
8
ε0χ

(3) (ω = ω + ω − ω) E2
0E∗

0 e−iωt + c.c.
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Of course, the linear polarization also yields a contribution at the ground fre-
quency. So that the full polarization at the ground frequency will be given by:

P |ω = P (1)
∣∣∣
ω

+ P (3)
∣∣∣
ω

=
(13.12)

=
1
2
ε0

(
χ(1) (ω) +

3
4
χ(3) (ω = ω + ω − ω) |E0|2

)
E0 e−iωt + c.c.

We are now in a similar situation as in the previous section, when we discussed
the linear electrooptical effect ((13.8)). Equation (13.12) is again equivalent to
a linear material equation with an effective susceptibility, the latter depending
on the intensity of the incoming light. The effective susceptibility is now
given by:

χ(eff) (ω) = χ(1) (ω) +
3
4
χ(3) (ω = ω + ω − ω) |E0|2 (13.13)

It depends on the square of the field strength and represents a special version
of the optical Kerr-effect. The square root of the effective dielectric function
becomes:√

ε(eff) (ω) =

√
1 + χ(1) (ω) +

3
4
χ(3) (ω = ω + ω − ω) |E0|2

=
√

ε

√
1 +

3
4

χ(3) (ω = ω + ω − ω)
ε

|E0|2

where, as usual, ε = 1 + χ(1).
Let us now assume, that the linear dielectric function is purely real at the

given frequency. In linear optics, the medium would then be free of absorption,
and the usual refractive index would be given by the square root of the
dielectric function. The effective index of refraction is now given by:

n̂(eff) (ω) = n

√
1 +

3
4

χ(3) (ω = ω + ω − ω)
n2 |E0|2

If the nonlinear contribution is small compared to the linear one, this rela-
tionship may be rewritten as:

n̂(eff) (ω) ≈ n +
3
8

χ(3) (ω = ω + ω − ω)
n

|E0|2 (13.14)

Although the linear dielectric function has been assumed to be real, the
effective index of refraction may be complex, depending on the properties of
the third order susceptibility at the given frequency. In any case, we obtain
an intensity-dependent effective refractive index according to:

n(eff) (ω) ≈ n +
3
8

Reχ(3) (ω = ω + ω − ω)
n

|E0|2 ≡ n + n2|E0|2 (13.15)
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It turns out to be dependent on the intensity of the electromagnetic wave. The
value n2 is called the nonlinear refractive index of the medium. The intensity-
dependence of the refractive index in a third order (or even higher odd order)
nonlinear optical medium is responsible for different self-interaction processes
of highly intense light beams, such as self-focusing of laser beams, or self-
phase-modulation processes in ultrashort light pulses, essential for white light
continuum generation.

Let us now look at the imaginary part. From (13.14), it follows immedi-
ately that there is a nonlinear absorption coefficient given by:

αnl (ω) ≈ 3
4

ω

cn
Imχ(3) (ω = ω + ω − ω) |E0|2 (13.16)

With increasing intensity of the light, the medium may become absorbing.
As it will become clear from the semiclassical expressions for the nonlinear
susceptibilities, the nonlinear absorption as described by (13.16) results from
two-photon absorption processes.

The mentioned effects give a short survey to the reader which kind of
new optical effects may be expected in the field of nonlinear optics. We finish
the formal treatment of nonlinear optical effects at this stage and turn to
the semiclassical calculation of susceptibilities. The primary purpose of the
following section is not to develop high mathematics for susceptibility calcu-
lations, but to reveal a picture on the quantum mechanical processes behind
the scene of the formally introduced susceptibilities.

13.2 Calculation Scheme
for Nonlinear Optical Susceptibilities

13.2.1 Macroscopic Susceptibilities
and Microscopic Hyperpolarizabilities

Before starting with quantum mechanical calculations of the nonlinear op-
tical response of matter, we have to perform the same formal work as we
performed in the case of linear optics. The problem is, that quantum me-
chanical calculations as presented in Chap. 11 often concern the calculation
of the microscopic dipole moment of an accessible quantum system, which
might be a molecule or an atom. On the other hand, the susceptibilities have
been introduced through the macroscopic polarization vector by (13.1):

D = ε0E + P = ε0E + P (1) + P (2) + P (3) + . . .

= ε0

{
E + χ(1)E + χ(2) : EE + χ(3) : EEE + . . .

}
In complete analogy to linear optics, the corresponding microscopic material
equation may be formulated as:
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p = p(1) + p(2) + p(3) + . . .
(13.17)

= ε0

{
β(1)Emicr + β(2) : EmicrEmicr + β(3) : EmicrEmicrEmicr + . . .

}
Equation (13.17) describes the microscopic dipole moment in terms of an
expansion into a power series of the local or microscopic electric field. The
expectation values for the linear and nonlinear contributions to the dipole
moment may be calculated in analogy to what has been done in Chap. 11.
The proportionality coefficient β(1) is nothing else than the usual linear polar-
izability as introduced in Chap. 3. The values β(j>1) are the so-called higher
order polarizabilities (or nonlinear polarizabilities, or hyperpolarizabilities)
of the microscopic oscillator. They may be determined immediately, when
the dipole moment has been calculated. On the other hand, in order to de-
termine the susceptibility, it will be necessary to establish a theoretical re-
lationship between the hyperpolarizabilities and the macroscopic nonlinear
susceptibilities which enter into (13.1). In linear optics, this relationship has
been supplied by the Clausius–Mossotti-Equation. So what we need now is a
nonlinear version of this equation.

We will present here only the final result, valid for spherical symmetry
as it was in the case of the Clausius–Mossotti-Equation. The derivation may
be performed by the reader himself (compare Sect. 13.3.2). As the result, we
obtain:

χ(j)

(
ωj+1 =

j∑
l=1

ωl

)
= N

j+1∏
l=1

[
ε (ωl) + 2

3

]
β(j)

(
ωj+1 =

j∑
l=1

ωl

)
(13.18)

where N is again the concentration of the microscopic dipoles. The local field
correction (13.18) has to be applied with the same caution as in linear optics,
in particular, the recommendations from Table 3.2 apply as well.

13.2.2 Density Matrix Approach
for Calculating Optical Hyperpolarizabilities

In analogy to Sect. 11.2.3, let us write down the equation for the non-diagonal
elements of the density matrix in the interaction picture according to (electric
dipole interaction only):

∂

∂t
ρmn +

ρmn

T2,mn
=

i
�
[p,ρ]mnE (13.19)

The non-diagonal elements of the density matrix are essential for the calcu-
lation of the dipole moment because of (11.22):

〈p〉 = Tr (pρ) =
∑

n

∑
m

pnmρmn (13.20)
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In (13.20) and in the following, the bold writing of p only indicates its vector
character. Again, we assume

pnn = 0 ∀n .

Equation (13.19) may be rewritten as:

∂

∂t
ρmn +

ρmn

T2,mn
=

i
�

∑
l

(pmlρln − ρmlpln)E (13.21)

In the absence of any electric field, the stationary solutions of (13.21) are iden-
tical to zero. We mark these solutions by a superscript (0). Hence, we have:

ρ(0)
mn = 0

In the absence of any perturbing field, the diagonal elements of the den-
sity matrix are expected to approach their equilibrium values. According to
(11.21), we suppose:

ρ(0)
nn =

e
− En

kBT∑
n

e
− En

kBT

This expression is at least applicable for gases, or molecular liquids and solids.
Our subsequent derivation will deal with this case. For solids whose electronic
properties are dominated by the band structure, the equilibrium values of the
density matrix will be given by the Fermi-Dirac distribution.

The appearance of the electric field will obviously alter the elements of
the density matrix. We therefore assume:

ρ = ρ (E) = ρ(0) + ρ(1) + ρ(2) + ρ(3) + ... (13.22)

with

ρ(0) ∝ E0 ; ρ(1) ∝ E1 ; ρ(2) ∝ E2 ; ρ(3) ∝ E3 (13.23)

and so on.
Equations (13.22) and (13.23) in fact represent a perturbation theory

approach and require fast convergence of the series. Some criteria will be
given later. In order to simplify our treatment, let us regard conditions, which
are either nonresonant or, if resonance occurs, do not lead to remarkable
changes in the population of the individual energy levels due to sufficiently
weak excitation. In this case, we can make the simplifying assumption on the
diagonal elements of the density matrix, that

ρ(j>0)
nn = 0 ∀n ⇒ ρnn = ρ(0)

nn (13.24)



13.2 Calculation Scheme for Nonlinear Optical Susceptibilities 245

Substituting ρmn in (13.21) by (13.22), and collecting the terms which belong
to the same power in the field strength, we obtain the system of equations:

∂

∂t
ρ(j+1)

mn +
ρ
(j+1)
mn

T2,mn
=

i
�

∑
l

(
pmlρ

(j)
ln − ρ

(j)
mlpln

)
E; j = 0, 1, 2, . . .

⇒ ∂

∂t
ρ(j+1)

mn +
ρ
(j+1)
mn

T2,mn
= (13.25)

=
i
�

⎡
⎣pmn

(
ρ(j)

nn − ρ(j)
mm

)
+
∑
l �=n

(
pmlρ

(j)
ln

)
−
∑
l �=m

(
ρ
(j)
mlpln

)⎤⎦E

From (13.25) and (13.24), we immediately find the different equations for the
first and higher order contributions to the density matrix:

linear case:
∂

∂t
ρ(1)

mn +
ρ
(1)
mn

T2,mn
=

i
�

(
ρ(0)

nn − ρ(0)
mm

)
pmnE ;

(13.26)

nonlinear case:
∂

∂t
ρ(j+1)

mn +
ρ
(j+1)
mn

T2,mn
=

i
�

⎡
⎣∑

l �=n

(
pmlρ

(j)
ln

)
−
∑
l �=m

(
ρ
(j)
mlpln

)⎤⎦E

According to (13.5), we write the microscopic electric field as:

E =
1
2

∑
q

Eqe−iωqt + c.c. (13.27)

Let us solve equations (13.26) for the first and higher order perturbation
cases. The first-order equation becomes:

∂

∂t
ρ(1)

mn +
ρ
(1)
mn

T2,mn
=

i
2�

(
ρ(0)

nn − ρ(0)
mm

)
pmn

(∑
q

Eqe−iωqt + c.c.

)
(13.28)

We must now remember, that in the interaction picture, the matrix elements
of the dipole operator pmn carry a time-dependence according to (11.28).
Therefore, we use the same kind of approach as in Sect. 11.2.3:

ρ(1)
mn =

∑
q

(
ρ−

mn,q + ρ+
mn,q

)
ρ(−)

mn,q = P (−)
mn,qe

i(ωmn−ωq) t (13.29)

ρ(+)
mn,q = P (+)

mn,qe
i(ωmn+ωq) t

where the P -values shall not depend on time. (13.28) and (13.29) together
yield:
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ρ(1)
mn =

1
2�

(
ρ(0)

nn − ρ(0)
mm

)
pmn

∑
q

(
Eqe−iωqt

ωmn − ωq − iΓmn
+

E∗
qe

iωqt

ωmn + ωq − iΓmn

)
(13.30)

From (13.30) and (13.20), one could now calculate the first order dipole mo-
ment. That would lead to an expression for the components of the first order
polarizability tensor. In the case of optical isotropy, (11.31) would follow from
there as a special case.

However, our purpose is to find expressions for the nonlinear polarizabili-
ties. This may be done combining (13.20) and the equation for the higher or-
der contributions to the density matrix (13.26). For the second order, we find:

∂

∂t
ρ(2)

mn +
ρ
(2)
mn

T2,mn
=

i
�

⎡
⎣∑

l �=n

(
pmlρ

(1)
ln

)
−
∑
l �=m

(
ρ
(1)
mlpln

)⎤⎦E (13.31)

The first order density matrix terms, which enter into (13.31), are now given
by (13.30). For the electric field, we have (13.27). It is obvious that we become
confronted with an extensive and tedious derivation, although the general
strategy of the calculation is simple. Let us therefore concentrate on the
general structure of the expressions which will be obtained.

Substituting the first order expressions in (13.31) by (13.30), and E by
(13.27), we find:

∂

∂t
ρ(2)

mn + ρ(2)
mnΓmn =

i
2�2

×
⎧⎨
⎩∑

q′

∑
l

[
pml (plnEq′) e−iωq′ t

ωln − ωq′ − iΓln

(
ρ(0)

nn − ρ
(0)
ll

)
+ 3 more terms

]⎫⎬
⎭ (13.32)

×
(

1
2

∑
q

Eqe−iωqt + c.c.

)

We will not explicitly write out all terms, they follow immediately from al-
gebra. Again, the matrix elements of the dipole operator carry the relevant
time dependence. It is given by:

pmlpln ∝ ei(ωml+ωln) t = e
i
�
(Em−El+El−En)t = eiωmnt

Therefore, for the density matrix, we assume the time dependence:

ρ(2)
mn ∝ ei(ωmn∓ωq′ ∓ωq) t

Substituting this into (13.32), we find the density matrix to be propor-
tional to:
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ρ(2)
mn ∝ 1

�2 ×
(13.33)

×
∑

l

∑
q′

∑
q

⎡
⎣ (pmlEq) (plnEq′)

(
ρ
(0)
nn − ρ

(0)
ll

)
e−i(ωq′+ωq) t

(ωmn − ωq − ωq′ − iΓmn) (ωln − ωq′ − iΓln)
+ 7 more terms

⎤
⎦

Utilizing 〈
p(2)

〉
=
∑

n

∑
m

pnmρ(2)
mn

we find the second order polarization (for example at the sum frequency):〈
p(2) (ωq + ωq′)

〉
(13.34)

∝ 1
�2

∑
n

∑
m

∑
l

⎡
⎣pnm (pmlEq) (plnEq′)

(
ρ
(0)
nn − ρ

(0)
ll

)
e−i(ωq′+ωq) t

(ωmn − ωq − ωq′ − iΓmn) (ωln − ωq′ − iΓln)
+ . . .

⎤
⎦

From (13.34) and (13.17) it becomes clear, that the expression for the second
order polarizability has the mathematical structure like:

β
(2)
abc (ω = ωq + ωq′) (13.35)

∝ 1
ε0�2

∑
n

∑
m

∑
l

⎡
⎣ pnm,apml,bpln,c

(
ρ
(0)
nn − ρ

(0)
ll

)
(ωmn − ωq − ωq′ − iΓmn) (ωln − ωq′ − iΓln)

+ . . .

⎤
⎦

where a, b and c stand for the relevant Cartesian coordinates.
Equation (13.35) reveals the general structure of the expression for the

second order hyperpolarizability. Practically, it differs from the linear expres-
sion by an additional pre-factor of the type:

pnm

� (ωmn − ωq − ωq′ − iΓmn)
(13.36)

We will discuss this expression a bit later, namely in the next section. Let us
now shortly look at the third order polarizability.

The philosophy of calculating is again the same. We have to start from
the calculation of the third order contribution to the density matrix. The
recurrent equation (13.26) yields:

∂

∂t
ρ(3)

mn +
ρ
(3)
mn

T2,mn
=

i
�

⎡
⎣∑

l �=n

(
pmlρ

(2)
ln

)
−
∑
l �=m

(
ρ
(2)
mlpln

)⎤⎦E

Having calculated the second order contribution to the density matrix (13.33),
the third order density matrix contribution may be calculated in complete
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analogy. Then, we calculate the third order dipole moment in the usual man-
ner. From there, comparing with (13.17), we obtain the third order hyperpo-
larizability.

Again, we will only present the general mathematical structure. In anal-
ogy to the previous calculations, in the general structure of the expression
there appears an additional pre-factor of the type (13.36). So it will finally
be obtained:

β
(3)
abcd (ω = ωq + ωq′ + ωq′′) ∝ 1

ε0�3

∑
n

∑
m

∑
l

∑
k

×
(13.37)

×
[

pnm,apml,bplk,cpkn,d

(ωmn − ωq − ωq′ − ωq′′ − iΓmn) (ωln − ωq′ − ωq′′ − iΓln) (ωkn − ωq′′ − iΓkn)
+ . . .

]

Here, a, b, c and d stand for the relevant Cartesian coordinates. In the same
way, higher order hyperpolarizabilities may be calculated.

13.2.3 Discussion

Convergence

Let us start our discussion on the general properties of the nonlinear polar-
izabilities with some considerations on the convergence of the series (13.17).
According to (13.36), fast convergence is achieved when the condition:∣∣∣∣∣∣∣∣∣∣

|pnmEq|

�

(
ωmn −∑

q
ωq − iΓmn

)
∣∣∣∣∣∣∣∣∣∣
� 1 (13.38)

is fulfilled. Let us firstly regard a non-resonant case, when ωmn � ∑
q

ωq

holds. In this case, condition (13.38) leads to∣∣∣∣pnmEq

�

∣∣∣∣ << ωmn (13.39)

In the non-resonant case, condition (13.39) guarantees that non-linear con-
tributions to the polarization of the medium are small, and higher-order
nonlinearities may surely be neglected. It is obvious, that the term∣∣∣∣pnmEq

�

∣∣∣∣
must have the dimension of a frequency. In fact, it is nothing else than the
so-called Rabi-frequency Ω(Ω ≡ |pnmEq/�|), which plays an important role
in the theory of coherent optical spectroscopy.
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The relation (13.39) is equivalent to the requirement, that the strength
of the impinging electric field is small compared to the atomic electric fields.

In resonant conditions, from (13.38) one finds:∣∣∣∣pnmEq

�

∣∣∣∣ � Γmn ≡ T−1
2,mn (13.40)

This equation will be fulfilled, when relaxation processes in the medium are
sufficiently fast to instantaneously destroy the polarization induced by the
resonant electric field.

Selection Rules

Let us now come to the selection rules. According to the derivations from
Sect. 13.2.2, the quantum mechanical selection rules for the different-order
processes are determined by the following requirements:

β
(1)
ab �= 0 ⇔ pnm,apmn,b �= 0

β
(2)
abc �= 0 ⇔ pnm,apml,bpln,c �= 0 (13.41)

β
(3)
abcd �= 0 ⇔ pnm,apml,bplk,cpkn,d �= 0

and so on. This looks like a simple generalization of the familiar dipole in-
teraction selection rules formulated, for example, in (10.22) or (11.24). In
particular, (13.41) leads us to the conclusion, that in a quantum system
with inversion symmetry, all even-order optical polarizabilities are zero in
the dipole approximation: Indeed, let us look at the second order polariz-
ability. Supposing that state |n〉 is of even parity, we must require that |m〉
is odd, otherwise pnm will be zero. For the same reason, |l〉 must be even.
But if so, pln will be zero. So that there is no way to arrange the quantum
states in a manner that the product pnmpmlpln becomes non-vanishing. This
argumentation applies to all even-order polarizabilities, but it is not applica-
ble to the odd-order polarizabilities. This is exemplified in Fig. 13.2 for the
particular cases of linear polarization (a), SHG (b), THG (c), and Fourth-
Harmonic-Generation (d). In application to macroscopic systems, it leads to
the already mentioned vanishing even-order susceptibilities in systems with
an inversion centre.

Resonance Behaviour

A glance at (13.37) shows us, that in nonlinear optics, principally new types of
resonances may occur. Thus, the third-order susceptibility shows a resonant
behaviour, when one of the frequencies of the impinging light falls close to
a transition frequency of the medium. This type of resonance behaviour is
well-known from linear optics. But in contrast to linear optics, there are
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Fig. 13.2. Visualization of the effect of the parity selection rule on nonlinear optical
polarizabilities: even-order processes are forbidden (right side, b) and d)), while
odd-order processes are, in principle, allowed (left side, a) and c))

additional resonances, when the combination of several impinging frequencies
corresponds to a transition frequency. These so-called multiphoton resonances
are a characteristic feature of nonlinear optics.

In resonance conditions, the third order polarizability (and consequently
the corresponding susceptibility) have a significant imaginary part. As we
know from Sect. 13.1.3, this may lead to absorption processes with a nonlin-
ear absorption coefficient, which depends on the intensity of the impinging
irradiation. Let us therefore as an example regard the nonlinear absorption
caused by the imaginary part of the third order susceptibility.

Nonlinear Absorption Coefficient

In Sect. 13.1.3, we supposed a medium with third-order optical nonlinear-
ity, excited by a monochromatic light wave with the angular frequency ω.
Moreover, we supposed that the linear susceptibility is purely real at the
given frequency. According to (13.30), no single-photon resonances should
therefore occur between populated energy levels. In this case, we found a
nonlinear absorption coefficient given by (13.16):

αnl (ω) ≈ 3
4

ω

cn
Imχ(3) (ω = ω + ω − ω) |E0|2
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According to (13.18), in the given circumstances the imaginary part of the
third order nonlinear susceptibility can only be different from zero when the
third order hyperpolarizability has a non-vanishing imaginary part. It is given
by (compare (13.37)):

β
(3)
abcd (ω = ω + ω − ω) ∝ 1

ε0�2

∑
n

∑
m

∑
l

∑
k

×
(13.42)

×
[

pnm,apml,bplk,cpkn,d

(ωmn − ω − iΓmn) (ωln − 2ω − iΓln) (ωkn − ω − iΓkn)
+ . . .

]

Because single photon resonances have been excluded, the only possibility to
come into resonance is to require:

2ω → ωln

This condition describes a two-photon resonance, and the corresponding ab-
sorption process is called two-photon absorption. It is a process, where the
energy of two photons is used instantaneously to bridge the energy gap be-
tween the levels n and l. In a somewhat näıve but simple picture, one may
imagine that two photons have to “arrive” at the same time, so that the sys-
tem can utilize their energy instantaneously for an absorption process. The
more photons arrive in a certain time interval, the more probable the process
becomes. For that reason, the two-photon absorption coefficient depends on
the intensity of the impinging light.

Let us re-arrange expression (13.42). We may write:

β
(3)
abcd (ω = ω + ω − ω)

∝ 1
ε0�2

∑
n

∑
l

⎧⎪⎪⎨
⎪⎪⎩
[∑

m

pnm,apml,b

(ωmn − ω − iΓmn)

] [∑
k

plk,cpkn,d

(ωkn − ω − iΓkn)

]
(ωln − 2ω − iΓln)

+ . . .

⎫⎪⎪⎬
⎪⎪⎭

From here we see, that the transition rates for a two-photon absorption pro-
cess between the levels n and l will not be determined by pnl as in the case
of simple absorption, but rather by conglomerates of the type:[∑

k

plk,cpkn,d

(ωkn − ω − iΓkn)

]
(13.43)

Correspondingly, the selection rule would be, that the term (13.43) is different
from zero.

By the way, similar expressions hold for the probability of Raman-
scattering.
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Having shortly discussed the two-photon absorption as one prominent
example of multiphoton processes, let us formulate two main conclusions
which apply for other multi-photon processes as well. Compared to single
photon processes, multiphoton processes

– are subject to other selection rules (may be efficient in situations, where
single photon processes do not work),

– are subject to other resonance conditions (do not require the incident
frequency to be tuned to the transition frequency). Hence, there is more
freedom in choosing the light source.

Therefore, they are widely used in optical spectroscopy today.

13.3 Resume from Chapter 13

13.3.1 Overview on Main Results

So far, this chapter has dealt with some properties of nonlinear optical sus-
ceptibilities, essential for the description of nonlinear optical processes in
different media. As this is a book on thin film optics, we will not go into
further detail in this field. Nevertheless, some fundamental understanding on
nonlinear optics is essential even for a thin film researcher, because in the
case of laser applications, nonlinear optical processes may be essential to un-
derstand the performance of a coating. For that reason, a simple treatment of
nonlinear processes such as the optical Kerr-effect and nonlinear absorption
processes have been included into this book.

In fact, we have already dealt with other non-linear optical processes
throughout this book. Thus, the simple discussion of the saturation of an op-
tical transition (Sect. 10.7.1) made us familiar with another nonlinear optical
process: At high light intensities, resonant excitation may alter the popula-
tion of the participating quantum states. Then, assumption (13.24) is no more
valid, and the intensity-dependence of the diagonal elements of the density
matrix has to be taken into account. This is comparably easy to be calculated
in the case of a two-level system, but is beyond the scope of this book. We
only notice that the general conclusions form Sect. 10.7.1 will remain valid.

Other sources of optical nonlinearities may, for example, arise from sample
heating caused by light absorption, which alters the diagonal elements of the
density matrix due to thermal population of higher energy levels.

Another remark concerns the general philosophy of our treatment as de-
scribed in Sect. 2.4. In that section we remarked, that the calculation of an
optical signal includes two main parts: the first part deals with the calculation
of the corresponding material constants, while in the second part, one has to
solve Maxwell’s equations in the given experimental geometry, utilizing the
previously calculated material constants. Concerning our treatment of non-
linear optics, the only thing we did so far was to give a recipe to calculate
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the material constants (nonlinear optical susceptibilities). What about the
solution of the wave equation (2.2), considering the existence of nonlinear
polarization contributions?

A grammar treatment of nonlinear optical processes will, of course, in-
clude the solution of the corresponding wave equation. Again, we will not
deal with this theory here. We only mention, that, for example, an efficient
frequency conversion by SHG does not only require a large second order sus-
ceptibility. Instead, one also has to take care that the phase velocities of the
electromagnetic waves at the ground and doubled frequencies are identical
(phase-matching). Otherwise, no efficient energy transfer from the incident
wave to the SHG signal will occur. These results will be obtained as a natural
conclusion from the solution of the corresponding nonlinear wave equation.
The interested reader is referred to the literature on nonlinear optics in this
context.

Keeping in mind the above-mentioned remarks, we formulate the main
results of the current chapter as follows:

– We have become familiar with elemental non-linear optical processes aris-
ing from second- and third order optical nonlinearities in the non-linear
material equation. In particular, from the structure of the material equa-
tion, we were able to identify some utmost important nonlinear optical
effects, namely: SHG, SFG, DFG, optical rectification, the Pockels effect,
THG, the optical Kerr-effect, and nonlinear absorption.

– Basing on Liouville’s equation for the density matrix, we developed a
semiclassical perturbation approach for the calculation of nonlinear op-
tical polarizabilities in the dipole approximation. On this basis, we were
able to identify two- and higher order photon resonance processes. Ad-
ditionally, some important selection rules for nonlinear optical processes
could be derived.

13.3.2 Problems

1. Give a derivation of (13.18)!

Answer: In (3.20), you will now have to consider that

P = P linear + P nonlinear.

In analogy to Sect.3.2.2, you will find then:

P linear = (ε − 1) ε0

(
E +

P nonlinear

3ε0

)

That leads to:
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D = ε0E + P linear + P nonlinear

= ε0εE +
ε + 2

3
P nonlinear ≡ ε0εE + Dnonlinear

Assuming: Dnonlinear = ε0χ
(j)Ej and P nonlinear = Nε0β

(j)Ej
micr

with Emicr =
ε + 2

3
E, we obtain (13.18).

2. Make sure that the Rabi-frequency as defined in Sect.13.2.2 has the right
dimensionality!

Answer: Yes, it has.

3. Assuming a Rydberg-like atom, give a physical interpretation of (13.39)!

Answer: It turns out, that the electric field amplitude in the wave should
be much smaller than

1
4πε0

e

a2
0
,

where a0 is Bohr’s radius, and e the elementary charge. For the deriva-
tion you should assume that pnm ≈ ea0. That means, that nonlinear
optical processes become relevant, when the field of the wave becomes
comparable to the electric field strength in an atom.
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We have now finished our excursion through fundamental aspects of the op-
tical properties of optical thin films and film systems. At this moment, it is
worth summarizing the main statements derived in this book, and to empha-
size their relation to practical aspects of optical thin film spectroscopy.

First of all, let us recall what has been defined as the subject of this book.
This book represents a tutorial for those readers who need a grammar math-
ematical apparatus for the description of thin film optical spectra. The book
is definitely not dedicated to thin film design, and it is even not restricted
to optical interference coatings. Instead, it should give support to anybody
who has to judge the properties of thin films or thin film systems, basing on
transmittance and/or reflectance spectra.

In this connection it is worth remembering that a scientist may be involved
in thin film optics for quite different reasons. Of course, there is the broad
community of researchers in the field of optical interference coatings. But
knowledge on the optical properties of thin solid films may be important in
other branches as well. Thin film spectroscopy may be helpful to judge the
properties of any thin film, no matter whether it is to be applied for optical
purposes or not. It may yield important information on the film geometry,
stoichiometry, structure and so on. Questions of this type may arise in the
fields of optoelectronics, semiconductor physics, or physical chemistry, to give
just some examples. For that reason, in this monograph we performed a
broad and detailed discussion of optical material properties (parts I, III, and
IV). In contrast to books that are specialized on interference coatings, the
absorption behaviour of the material has been discussed extensively. This is
a must for a thin film spectroscopist, because particularly in analytical tasks,
the spectral regions of considerable absorption are much more interesting
than the transparency regions. So when regarding, for example, Fig. 3.5, we
have to recognize that the thin film engineer, which is involved in the design
of interference coatings, and the more analytical spectroscopist may work
with the same material, but they will utilize disjunctive spectral regions. In
interference coatings design, one will try to apply materials with as possible
low absorption losses in the requested spectral region. In chemical analysis,
on the contrary, one will particularly focus on absorption features to judge
the structure and stoichiometry of a sample.
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There are other differences as well. In optical analytics, one will often
restrict on single-layer-systems, while the thin film engineer has to consider
multilayer systems. Again, both aspects have been considered in this book
(part II).

The large number of film interfaces in an optical interference coating,
combined with low bulk absorption losses, results in specific loss mechanisms,
which are often negligible in the analytics of absorbing single layer systems:
In interference coatings theory, interface absorption and interface scattering
loss mechanisms may be relevant. We did not deal with this matter in this
book, because this is rather a special problem in the field of interference
coatings.

It is finally worth noting, that reverse search procedures occur in ana-
lytical thin film spectroscopy as well as in optical coatings design. In this
book, we only described a few aspects of the analytical task (Sect. 7.4.6). Let
us shortly state the main differences concerning reverse searches in optical
coatings design and thin film analytics.

In the analytical task, our goal would be to determine the optical con-
stants and the film thickness of a sample from measured spectra (in our case
T (ν) and R(ν)). From these spectra, one might try to calculate the optical
constants by minimizing a merit function of the type (7.27). The minimiza-
tion should come to an end, when a fit is achieved within the measurement
error bars. As the measurements have been performed with really existing
samples, we may expect that there exists at least one solution of this mini-
mization problem (at least one pair of functions n(ν) and α(ν)), which leads
to a fit of the experimental spectra. As a matter of fact, one will often find a
multiplicity of solutions. Clearly, only one of these solutions corresponds to
the physically meaningful solution which is relevant for the concrete sample
under consideration, and this solution has to be selected.

In thin film design, the task is to design a coating that fits certain pre-
scribed specifications. Mathematically that leads to the same minimization
procedure, with the only difference that the measured spectra have to be re-
placed by the required specifications (for example the filter characteristics),
and the measurement error by the accepted tolerances. The multiplicity of
solutions is now of use: If there are different solutions, they correspond to
different designs having the same spectral response, and one may choose the
design which is most conveniently to be manufactured. On the contrary, there
is no guarantee that there exists a solution at all. That means it may be im-
possible to find a thin film design which meets the specifications - basing
on the optical materials available. Despite of the current efforts to refine the
mathematical design methods (the development of the so-called needle op-
timization technique is just one example), it is also a challenging task to
develop new optical materials with tailored optical properties.

Let us visualize the content of this book in the light of the previous discus-
sion. This is attempted in Table 14.1. Here, the main contents of this book are
opposed to the specifics of optical interference coatings practice, and optical
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Table 14.1. To the content of this monograph

Optical interference
coatings

Optical thin film spec-
troscopy for analytical
tasks

This book

Motivation Design a coating
which meets a pre-
scribed specification;
quality control

Get information on
geometry, structure,
stoichiometry, band
structure and so on

Tutorial, which de-
rives the basic math-
ematical
apparatus

Specifics of the
reverse search
procedure

Multiplicity of solu-
tions is welcome; ex-
istence of the solu-
tions is guaranteed
only in special cases

Solution must exist,
but there is only one
physically meaningful
solution

No design skills,
examples on reverse
search in analytics

Typical spec-
tral region

Outside the regions
of intrinsic film mate-
rial absorption

Absorbing spectral re-
gions

Derivation of equa-
tions, valid for spec-
tral regions of signif-
icant as well as negli-
gible absorption

Typical mod-
els for optical
constants

Classical models
and their derivations
(Cauchy, Sellmeier)

Semiclassical or quan-
tum mechanical mod-
els

Classical and semi-
classical description

Typical sam-
ple geometry

Multilayer stack on a
surface or a slab
(substrate)

Surface, Slab, or sin-
gle film on a surface or
a slab

Surface, slab, single
film on a surface or a
slab; multilayer stack
on a surface or a slab

Interface or
surface losses

May be important Usually negligible Not considered

thin film analysis. This is a simplified classification, and exclusions from the
mentioned features will surely occur (for example, metal interference filters
contain metal films, which necessarily have some absorption). But the main
message is, that this book supplies the reader with the basic theoretical ap-
paratus applicable in interference coatings physics as well as analytical thin
film spectroscopy. On the other hand, it does not deal with highly special-
ized questions, such as the description of interface absorptions or a strong
quantum mechanical treatment of optical processes in crystals.

Having opposed the content of this book to the requirements of different
research fields, let us finally review the main subjects described in this book
and relate them to practical problems which are essential in optical thin film
research. Again, we will prefer a table (Table 14.2) for this review. Throughout
the derivations in this book, we did not always mention the concrete relation
between the subject under discussion and practical problems in thin film
spectroscopy. Nevertheless, after having read this book, the relation between
the third and the first columns of Table 14.2. should be clear. If not, so the
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Table 14.2. Practical relevance of the subjects considered in this book

Subject in this book Section Relation to thin film practice
Drude’s formula 3.1 Free electron contribution to the linear opti-

cal constants (for example metal films, highly
doped semiconductor films)

Lorentzian oscillator model 3.2 Bound electron contribution to the linear op-
tical constants in the vicinity of a single ab-
sorption line, or lattice vibrations

Multioscillator model 4.3 Complicated absorption structures, caused by
bound electrons or lattice vibrations
Inhomogeneous line broadening

Sellmeier- and Cauchy for-
mulae

4.4 Refractive index dispersion in transparency
regions

Mixtures 4.5 Role of film contaminations (extrinsic absorp-
tion)
Surface roughness with high spatial frequency
Columnar film structure, large voids in evap-
orated coatings
Simple treatment of optical anisotropy in
terms of depolarisation factors
Thermal shifts
Subnanometer voids in coatings, produced by
ion-assisted methods
Properties of composite film materials

Kramers–Kronig-Relations 5 Sum rules for quantitative spectroscopy
Fresnel’s equations 6 Interface reflections

Polarization effects at oblique incidence
Propagating surface plasmon polaritons at
metal surfaces

T and R for thick slabs 7.1;
7.4.4

Optical properties of possibly absorbing sub-
strates at any angle of incidence

T and R for thin films 7.2–7.4 Forward and reverse search for a single film on
a surface or substrate

Mathematical treatment of
refractive index gradients

8.1 Gradient index layers
Rugate filters

Matrix formalism 8.2; 9.1 Multilayer coatings
Selection rules 10.4 Interpretation of optical spectra
Semiclassical treatment of
the dielectric function

11; 12 Intrinsic thermal shifts
Shape of the absorption edge in crystalline
films (evaporation)
Size effects
Shape of the absorption edge in amorphous
films (ion-assisted deposition)

Nonlinear susceptibilities 13 Nonlinear refraction at high laser intensities
Nonlinear absorption at high laser intensities
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reader is referred to literature claimed as recommended for further reading
to the relevant chapter. The referring to literature has to be understood in
its cumulative version – it always means: the cited reference and references
cited therein. Having made these last remarks, we conclude the last chapter
of this book.
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die experimentellen und theoretischen Grundlagen (Springer-Verlag, Berlin
Heidelberg New York 1992) [engl.: Molecular physics and quantum chemistry:
Introduction in experimental and theoretical basics]

Chapter 10: Further Reading
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